Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Food Chem Toxicol ; 161: 112845, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35122930

RESUMO

Developmental toxicity studies have been conducted in the rabbit on triclopyr acid and its active-ingredient variants, triclopyr triethylamine salt (T-TEA) and triclopyr butoxyethyl ester (T-BEE), which are dissociated or hydrolysed in vivo to triclopyr acid. In this paper, the available developmental toxicity studies on triclopyr acid, T-TEA and T-BEE are summarised and evaluated. For triclopyr acid and T-TEA, there was no evidence of impaired reproductive performance, fetotoxicity, or teratogenicity, even at maternally toxic doses. The no-observed-adverse-effect levels (NOAELs) for developmental toxicity were 75 mg/kg bw per day for triclopyr acid and 100 mg/kg bw per day for T-TEA, equivalent to 72 mg/kg bw per day expressed as triclopyr acid. A study on T-BEE showed increased post-implantation loss and slight increases in skeletal anomalies and variants at the highest dose tested of 100 mg/kg bw per day, a maternally toxic dose. In a follow-up study on T-BEE, focusing on post-implantation loss, no general increase in post-implantation loss was observed, but one animal at 100 mg/kg bw per day with maternal toxicity had complete resorption of implants. The NOAEL for post-implantation loss was 60 mg/kg bw per day, equivalent to 44 mg/kg bw per day expressed as triclopyr acid. It cannot be excluded that T-BEE may be associated with increased post-implantation loss, but it was only seen in association with maternal toxicity. It is concluded that triclopyr acid and its variants are not specifically toxic to the rabbit embryo and fetus, since post-implantation loss only occurred at doses causing maternal toxicity.


Assuntos
Anormalidades Induzidas por Medicamentos , Feto/efeitos dos fármacos , Glicolatos/toxicidade , Reprodução/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Feminino , Glicolatos/química , Nível de Efeito Adverso não Observado , Coelhos
3.
Food Chem Toxicol ; 161: 112806, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34995710

RESUMO

Reproductive and developmental toxicity studies have been conducted in rat and rabbit on triclopyr acid and its active-ingredient variants, triclopyr butoxyethyl ester (T-BEE) and triclopyr triethylamine salt (T-TEA). In this paper the results of a rat two-generation study on triclopyr acid are presented, together with a review of all the reproductive and developmental toxicity data available from the rat studies. In the rat two-generation study, triclopyr acid was administered in the diet, giving doses of 0, 5, 25 or 250 mg/kg bw per day. Parental toxicity, especially maternal toxicity, occurred at 250 mg/kg bw per day with reduced body weight and feed intake, organ weight changes, and kidney toxicity. Slight kidney toxicity was also evident at 25 mg/kg bw per day. Developmental toxicity, in the form of reduced postnatal survival in the F1 and F2 generations and reductions in pre-weaning offspring body weight in both generations, was seen only at a dose causing significant parental toxicity. There were no effects on any other reproductive or developmental parameters at any dose. It is concluded that the developmental toxicity, seen only at the highest dose, was most likely attributable to maternal toxicity. The no-observed-adverse-effect levels were 5 mg/kg bw per day for parental toxicity and 25 mg/kg bw per day for developmental toxicity. From the multigeneration and developmental toxicity studies on triclopyr and its variants, it can also be concluded that triclopyr is not specifically toxic to reproduction and is not selectively toxic to the embryo, fetus or neonate in the rat.


Assuntos
Glicolatos/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Reprodução/efeitos dos fármacos , Ração Animal , Animais , Relação Dose-Resposta a Droga , Feminino , Contaminação de Alimentos , Glicolatos/administração & dosagem , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley
4.
Regul Toxicol Pharmacol ; 127: 105068, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34678328

RESUMO

Agrochemical safety assessment has traditionally relied on the use of animals for toxicity testing, based on scientific understanding and test guidelines developed in the 1980s. However, since then, there have been significant advances in the toxicological sciences that have improved our understanding of mechanisms underpinning adverse human health effects. The time is ripe to 'rethink' approaches used for human safety assessments of agrochemicals to ensure they reflect current scientific understanding and increasingly embrace new opportunities to improve human relevance and predictivity, and to reduce the reliance on animals. Although the ultimate aim is to enable a paradigm shift and an overhaul of global regulatory data requirements, there is much that can be done now to ensure new opportunities and approaches are adopted and implemented within the current regulatory frameworks. This commentary reviews current initiatives and emerging opportunities to embrace new approaches to improve agrochemical safety assessment for humans, and considers various endpoints and initiatives (including acute toxicity, repeat dose toxicity studies, carcinogenicity, developmental and reproductive toxicity, exposure-driven approaches, inhalation toxicity, and data modelling). Realistic aspirations to improve safety assessment, incorporate new technologies and reduce reliance on animal testing without compromising protection goals are discussed.


Assuntos
Agroquímicos/toxicidade , Alternativas aos Testes com Animais/métodos , Alternativas aos Testes com Animais/normas , Doença Aguda , Testes de Carcinogenicidade , Relação Dose-Resposta a Droga , Guias como Assunto , Testes de Mutagenicidade , Projetos de Pesquisa , Medição de Risco , Especificidade da Espécie , Fatores de Tempo
5.
Food Chem Toxicol ; 147: 111869, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33217531

RESUMO

Considerations of human relevance and animal use are driving research to identify new approaches to inform risk assessment of chemicals and replace guideline-based rodent carcinogenicity tests. Here, the hypothesis was tested across four agrochemicals that 1) a rat 90-day transcriptome-based BEPOD is protective of a rat carcinogenicity study and 2) a subchronic liver or kidney BEPOD would approximate a cancer bioassay apical POD derived from other organs and a rat subchronic BEPOD would approximate a mouse cancer bioassay apical POD. Using RNA sequencing and BMDExpress software, liver and/or kidney BEPOD values were generated in male rats exposed for 90 days to either Triclopyr Acid, Pronamide, Sulfoxaflor, or Fenpicoxamid. BEPOD values were compared to benchmark dose-derived apical POD values generated from rat 90-day and rodent carcinogenicity studies. Across all four agrochemicals, findings showed that a rat 90-day study BEPOD approximated the most sensitive apical POD (within 10-fold) generated from the 90-day rat study and long-term rodent carcinogenicity studies. This study supports the conclusion that a subchronic transcriptome-based BEPOD could be utilized to estimate an apical POD within a risk-based approach of chronic toxicity and carcinogenicity agrochemical assessment, abrogating the need for time- and resource-intensive rodent carcinogenicity studies and minimizing animal testing.


Assuntos
Agroquímicos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/patologia , Nefropatias/induzido quimicamente , Transcrição Gênica/efeitos dos fármacos , Animais , Testes de Carcinogenicidade , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Ratos , Toxicogenética
6.
Regul Toxicol Pharmacol ; 119: 104800, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33129916

RESUMO

Under European Regulation (EC) No 1272/2008 on the classification, labelling and packaging of substances and mixtures (CLP), chemicals can be classified as carcinogenic if they are considered to induce tumours, increase tumour incidence and/or malignancy, or shorten the time to tumour occurrence. Cancer classifications are divided into different hazard categories: Carc. 1A (known human carcinogen), Carc. 1B (presumed human carcinogen), Carc. 2 (suspected human carcinogen), and chemicals not classified for carcinogenicity. Selecting which classification is appropriate can be challenging, as judgements need to be made both on the existing hazard data and on its relevance to humans. One aspect to be considered in defining human relevance is a chemical's mode of action (MoA); the series of necessary key events that lead from an exposure to the adverse effect (in this case, tumours). This work aims to identify and discuss some of the features that have led ECHA's Committee for Risk Assessment (RAC) to decide upon harmonised cancer classifications for chemicals, and to prioritise future research on MoA and/or human relevance. RAC bases its decisions on cancer classification on both the weight-of-evidence (WoE) and strength-of-evidence (SoE) of this particular activity. Multiple factors contribute, including the species in which tumours are seen, and the relevance of the MoA to human health.


Assuntos
Carcinógenos/classificação , Substâncias Perigosas/classificação , Animais , Carcinógenos/toxicidade , União Europeia , Substâncias Perigosas/toxicidade , Humanos , Neoplasias/induzido quimicamente , Estudos Retrospectivos , Medição de Risco
8.
Regul Toxicol Pharmacol ; 116: 104714, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32640299

RESUMO

A review of pharmacokinetic and metabolism studies show that triclopyr is well absorbed from the oral route in numerous species (≥80%), primarily as parent compound. Absorption is quite rapid in rats, dogs and human volunteers. Plasma or blood clearance is also rapid (t1/2 3-9 h), except for dog (12-96 h). Systemic exposure is not dose-proportional: in the rat above 20 mg/kg (dietary) or between 3 and 60 mg/kg (gavage), or in dogs above 5 mg/kg, with systemic exposure in human more comparable to rat than dog. Triclopyr is highly bound to protein in rat, dog and human plasma (≥97% at or below 7 µg/mL), indicating that species differences in systemic exposure are not due to differences in the free fraction of this test material in plasma. An in vitro flux study in renal proximal tubule cells showed that net renal transport of triclopyr is in the direction of secretion in rat and human donors, while reabsorption predominated in the dog, possibly via organic anion transporters such as OAT1/3. These results fit well into the framework of utilizing metabolism and toxicokinetics across species and exposure levels to allow for toxicity testing in the most relevant species as well as at proper dose levels.


Assuntos
Glicolatos/farmacocinética , Herbicidas/farmacocinética , Animais , Humanos , Medição de Risco
9.
Crit Rev Toxicol ; 50(10): 836-860, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33528302

RESUMO

1,3-Dichloropropene (1,3-D; CAS #542-75-6) is a fumigant used for preplant treatment of soil to control parasitic nematodes and manage soil borne diseases for numerous fruit, vegetable, field and tree and vine crops across diverse global agricultural areas. In the USA, 1,3-D has historically been classified by the U.S. EPA as likely to be carcinogenic to humans via both oral and inhalation routes. This classification for the oral route was primarily based upon increases in multiple tumor types observed in National Toxicology Program (NTP) cancer bioassays in rats and mice, while the classification for the inhalation route was based upon increased benign bronchioloalveolar adenomas in a mouse study conducted by The Dow Chemical Company. Based on U.S. EPA standard risk assessment methodologies, a low-dose linear extrapolation approach has been used to estimate risks to humans. Furthermore, genotoxicity associated with 1,3-D was historically considered a potential mode of action (MOA) for its tumorigenicity. New information is available and additional studies have been conducted that reveal a different picture of the tumorigenic potential of 1,3-D. These data and information include: (1) initial cancer studies by the NTP were conducted on an antiquated form of 1,3-D which contained a known mutagen/carcinogen, epichlorohydrin, as a stabilizer while current 1,3-D fumigants use epoxidized soybean oil (ESO) as the stabilizer; (2) results from two additional oral rodent cancer bioassays conducted on the modern form of 1,3-D became available and these two studies reveal a lack of carcinogenicity; (3) a newly conducted Big Blue study in F344 rats via the oral route further confirms that 1,3-D is not an in vivo genotoxicant; and (4) a newly conducted repeat dose inhalation toxicokinetic (TK) study shows that linear dose proportionality is observed below 30 ppm, which demonstrates the non-relevance of 60 ppm 1,3-D-induced benign lung tumors in mice for human health assessment. This weight of evidence review is organized as follows: (a) the TK of 1,3-D are presented because of relevant considerations when evaluating test doses/concentrations and reported findings of tumorigenicity; (b) the genotoxicity profile of 1,3-D is presented, including a contemporary study in order to put a possible genotoxicity MOA into perspective; (c) the six available bioassays are reviewed followed by (d) scientifically supported points of departure (PODs) and evaluation of human exposure for use in risk assessment. Through this assessment, all available data support the conclusion that 1,3-D is not a tumorigen at doses below 12.5 mg/kg bw/day via the oral route or at doses below 30 ppm via the inhalation route. These findings and clearly identified PODs show that a linear low dose extrapolation approach is not appropriate and a threshold-based risk assessment for 1,3-D is human health protective. Finally, in 2019, the Cancer Assessment Review Committee (CARC) reevaluated the carcinogenic potential of 1,3-D. In accordance with the EPA's Final Guidelines for Carcinogen Risk Assessment, the CARC classified 1,3-D (Telone) as "Suggestive Evidence of Carcinogenic Potential based on the presence of liver tumors by the oral route in male rats only." Given this finding, EPA stated that "quantification of human cancer risk is not required. The CARC recommends using a non-linear approach (i.e. reference dose (RfD)) that will adequately account for all chronic toxicity including carcinogenicity, that could result from exposure to 1,3-dichloropropene."


Assuntos
Compostos Alílicos/toxicidade , Carcinógenos/toxicidade , Hidrocarbonetos Clorados/toxicidade , Praguicidas/toxicidade , Animais , Peso Corporal , Testes de Carcinogenicidade , Humanos , Camundongos , Mutagênicos , Ratos , Ratos Endogâmicos F344 , Medição de Risco
10.
Toxicol Sci ; 174(1): 16-24, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31808915

RESUMO

1,3-Dichloropropene (1,3-D) showed a statistically increased incidence of bronchioloalveolar adenomas in male B6C3F1 mice at 60 ppm air concentration during previous chronic inhalation testing. No tumors were observed in female mice, nor in either sex of F344 rats up to 60 ppm, the highest dose tested. Therefore, to understand if lung tumors observed in high dose male mice are due to saturation of metabolic clearance, the linearity of 1,3-D concentrations in mouse blood was investigated on day 15 of repeated nose-only inhalation exposure to 0, 10, 20, 40, 60, 90, and 120 ppm (6 h/d, 7 d/week). Additional groups were included at 20, 60, and 120 ppm for blood collection at 1.5 and 3 h of exposure and up to 25 or 40 min post-exposure to determine area-under-the-curve. The data provide multiple lines of evidence that systemic exposures to 1,3-D in the mouse become nonlinear at inhalation exposure levels of 30 ppm or above. A reduction in minute volume occurred at the highest exposure concentration. The glutathione (GSH)-dependent metabolism of 1,3-D results in significant depletion of GSH at repeated exposure levels of 30 ppm and above. This loss of GSH results in decreased metabolic clearance of this test material, with a concomitant increase of the 1,3-D isomers in circulating blood at exposure concentrations ≥30 ppm. Shifts in the ratio of cis- and trans-1,3-D also support nonlinear toxicokinetics well below 60 ppm. Based on this data, a kinetically derived maximum dose for 1,3-D in mice for repeated exposures should be at or below 30 ppm. These results support non-relevance of 1,3-D-induced benign pulmonary tumorigenicity in mice for human health risk assessment.


Assuntos
Adenoma/induzido quimicamente , Compostos Alílicos/toxicidade , Carcinógenos/toxicidade , Hidrocarbonetos Clorados/toxicidade , Neoplasias Pulmonares/induzido quimicamente , Pulmão/efeitos dos fármacos , Modelos Teóricos , Adenoma/metabolismo , Compostos Alílicos/sangue , Compostos Alílicos/farmacocinética , Animais , Carcinógenos/metabolismo , Carcinógenos/farmacocinética , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/metabolismo , Relação Dose-Resposta a Droga , Feminino , Hidrocarbonetos Clorados/sangue , Hidrocarbonetos Clorados/farmacocinética , Exposição por Inalação , Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Dinâmica não Linear , Ratos Endogâmicos F344 , Taxa Respiratória/efeitos dos fármacos , Medição de Risco , Fatores Sexuais , Distribuição Tecidual , Toxicocinética
11.
Regul Toxicol Pharmacol ; 102: 1-12, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30543831

RESUMO

Physiologically-based toxicokinetic (PBTK) models are mathematical representations of chemical absorption, distribution, metabolism and excretion (ADME) in animals. Each parameter in a PBTK model describes a physiological, physicochemical or biochemical process that affects ADME. Distributions can be assigned to the model parameters to describe population variability and uncertainty. In this study to assess potential crop sprayer operator exposure to the herbicide haloxyfop, a permeability-limited PBTK model was constructed with parameter uncertainty and variability, and calibrated using Bayesian analysis via Markov chain Monte Carlo methods. A hierarchical statistical model was developed to reconstruct operator exposure using available measurement data: experimentally determined octanol/water partition coefficient, mouse and human toxicokinetic data as well as human biomonitoring data from seven operators who participated in a field study. A chemical risk assessment was performed by comparing the estimated systemic exposure to the acceptable operator exposure level (AOEL). The analysis suggested that in one of the seven operators, the model estimates systemic exposure to haloxyfop of 49.04 ±â€¯10.19 SD µg/kg bw in relation to an AOEL of 5.0 µg/kg bw/day. This does not represent a safety concern as this predicted exposure is well within the 100-fold uncertainty factor applied to the No Observed Adverse Effect Level (NOAEL) in animals. In addition, given the availability of human toxicokinetic data, the 10x uncertainty factor for interspecies differences in ADME could be reduced (EFSA, 2006). Thus the AOEL could potentially be raised tenfold from 5.0 to 50.0 µg/kg bw/day.


Assuntos
Herbicidas/farmacocinética , Herbicidas/toxicidade , Fígado/metabolismo , Modelos Biológicos , Modelos Estatísticos , Exposição Ocupacional/análise , Piridinas/farmacocinética , Piridinas/toxicidade , Adulto , Idoso , Animais , Teorema de Bayes , Monitoramento Ambiental , Fazendeiros , Humanos , Masculino , Cadeias de Markov , Camundongos , Pessoa de Meia-Idade , Método de Monte Carlo , Nível de Efeito Adverso não Observado , Exposição Ocupacional/efeitos adversos , Medição de Risco , Toxicocinética , Adulto Jovem
12.
Toxicology ; 389: 109-117, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28774667

RESUMO

For the purposes of chemical safety assessment, the value of using non-animal (in silico and in vitro) approaches and generating mechanistic information on toxic effects is being increasingly recognised. For sectors where in vivo toxicity tests continue to be a regulatory requirement, there has been a parallel focus on how to refine studies (i.e. reduce suffering and improve animal welfare) and increase the value that in vivo data adds to the safety assessment process, as well as where to reduce animal numbers where possible. A key element necessary to ensure the transition towards successfully utilising both non-animal and refined safety testing is the better understanding of chemical exposure. This includes approaches such as measuring chemical concentrations within cell-based assays and during in vivo studies, understanding how predicted human exposures relate to levels tested, and using existing information on human exposures to aid in toxicity study design. Such approaches promise to increase the human relevance of safety assessment, and shift the focus from hazard-driven to risk-driven strategies similar to those used in the pharmaceutical sectors. Human exposure-based safety assessment offers scientific and 3Rs benefits across all sectors marketing chemical or medicinal products. The UK's National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) convened an expert working group of scientists across the agrochemical, industrial chemical and pharmaceutical industries plus a contract research organisation (CRO) to discuss the current status of the utilisation of exposure-driven approaches, and the challenges and potential next steps for wider uptake and acceptance. This paper summarises these discussions, highlights the challenges - particularly those identified by industry - and proposes initial steps for moving the field forward.


Assuntos
Alternativas aos Testes com Animais , Exposição Ambiental/efeitos adversos , Modelos Animais , Modelos Biológicos , Testes de Toxicidade/métodos , Toxicocinética , Animais , Simulação por Computador , Humanos , Reprodutibilidade dos Testes , Medição de Risco , Fatores de Risco
13.
Toxicol Sci ; 154(1): 90-100, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27492223

RESUMO

Dietary administration is a relevant route of oral exposure for regulatory toxicity studies of agrochemicals as it mimics potential human intake of the chemical via treated crops and commodities. Moreover, dietary administration of test compounds during a developmental toxicity study can deliver a prolonged and stable systemic exposure to the embryo or fetus at all stages of development. In this study, strategies were employed to optimize rabbit test material consumption via diet. Comparative toxicokinetic profiles of gavage versus dietary administration were evaluated in pregnant or non-pregnant New Zealand White rabbits for 2 novel agrochemicals with different plasma half-lives of elimination (sulfoxaflor, t½ = 13.5 h and halauxifen, t½ = 1 h). Dietary administration of sulfoxaflor resulted in stable 24-h plasma concentrations, whereas gavage administration resulted in a 3-fold fluctuation in plasma levels between Cmax and Cmin Dietary administration of sulfoxaflor resulted in a 2-fold higher nominal and diurnal systemic dose when compared with gavage dosing due to Cmax-related maternal toxicity following gavage. Results with the shorter half-life molecule, halauxifen, were more striking with a 6-fold diurnal fluctuation by the dietary route compared with a 368-fold fluctuation between Cmax and Cmin by gavage. Furthermore, plasma halauxifen was detectable only up to 12 h following gavage but up to 24 h following dietary administration. Finally, the presence of these compounds in fetal blood samples was demonstrated, confirming that dietary exposure is appropriate for achieving fetal exposure. Collectively, the results of these studies support the use of dietary exposure in rabbit developmental toxicity studies.


Assuntos
Administração Oral , Agroquímicos/toxicidade , Testes de Toxicidade/métodos , Animais , Dieta , Feminino , Feto , Meia-Vida , Gravidez , Piridinas/sangue , Piridinas/toxicidade , Coelhos , Compostos de Enxofre/sangue , Compostos de Enxofre/toxicidade , Toxicocinética
14.
Regul Toxicol Pharmacol ; 75: 89-104, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26472101

RESUMO

A strategic and comprehensive program in which toxicokinetic (TK) measurements are made for all agrochemicals undergoing toxicity testing (both new compounds and compounds already registered for use) is described. This approach provides the data to more accurately assess the toxicokinetics of agrochemicals and their metabolites in laboratory animals and humans. Having this knowledge provides the ability to conduct more insightful toxicity studies, refine and interpret exposure assessments and reduce uncertainty in risk assessments. By developing a better understanding of TK across species, including humans via in vitro metabolism studies, any differences across species in TK can be identified early and the most relevant species can be selected for toxicity tests. It also provides the ability to identify any non-linearities in TK as a function of dose, which in turn can be used to identify a kinetically derived maximum dose (KMD) and avoid dosing inappropriately outside of the kinetic linear range. Measuring TK in key life stages also helps to identify changes in ADME parameters from in utero to adults. A robust TK database can also be used to set internal concentration based "Reference Concentrations" and Biomonitoring Equivalents (BE), and support selection of Chemical Specific Adjustment Factors (CSAF). All of these factors support the reduction of uncertainty throughout the entire risk assessment process. This paper outlines how a TK research strategy can be integrated into new agrochemical toxicity testing programs, together with a proposed Framework for future use.


Assuntos
Agroquímicos/farmacocinética , Agroquímicos/toxicidade , Medição de Risco/métodos , Animais , Relação Dose-Resposta a Droga , Exposição Ambiental/análise , Humanos , Toxicocinética
15.
Toxicology ; 330: 62-6, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25932488

RESUMO

There are currently several factors driving a move away from the reliance on in vivo toxicity testing for the purposes of chemical safety assessment. Progress has started to be made in the development and validation of non-animal methods. However, recent advances in the biosciences provide exciting opportunities to accelerate this process and to ensure that the alternative paradigms for hazard identification and risk assessment deliver lasting 3Rs benefits, whilst improving the quality and relevance of safety assessment. The NC3Rs, a UK-based scientific organisation which supports the development and application of novel 3Rs techniques and approaches, held a workshop recently which brought together over 20 international experts in the field of chemical safety assessment. The aim of this workshop was to review the current scientific, technical and regulatory landscapes, and to identify key opportunities towards reaching these goals. Here, we consider areas where further strategic investment will need to be focused if significant impact on 3Rs is to be matched with improved safety science, and why the timing is right for the field to work together towards an environment where we no longer rely on whole animal data for the accurate safety assessment of chemicals.


Assuntos
Alternativas aos Testes com Animais/normas , Educação/normas , Testes de Toxicidade/normas , Alternativas aos Testes com Animais/métodos , Bem-Estar do Animal/normas , Animais , Educação/métodos , Humanos , Medição de Risco , Testes de Toxicidade/métodos
16.
Crit Rev Toxicol ; 44 Suppl 2: 1-14, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24832550

RESUMO

Plant protection products (PPPs) and the active substance(s) contained within them are rigorously and comprehensively tested prior to registration to ensure that human health is not impacted by their use. In recent years, there has been a widespread drive to have more relevant testing strategies (e.g., ILSI/HESI-ACSA and new EU Directives), which also take account of animal welfare, including the 3R (replacement, refinement, and reduction) principles. The toxicity potential of one such new active substance, sulfoxaflor, a sulfoximine insecticide (CAS #946578-00-3), was evaluated utilizing innovative testing strategies comprising: (1) an integrated testing scheme to optimize information obtained from as few animals as possible (i.e., 3R principles) through modifications of standard protocols, such as enhanced palatability study design, to include molecular endpoints, additional neurotoxicity and immunotoxicity parameters in a subchronic toxicity study, and combining multiple test guidelines into one study protocol; (2) generation of toxicokinetic data across dose levels, sexes, study durations, species, strains and life stages, without using satellite animals, which was a first for PPP development, and (3) addition of prospective mode of action (MoA) endpoints within repeat dose toxicity studies as well as proactive inclusion of specific MoA studies as an integral part of the development program. These novel approaches to generate key data early in the safety evaluation program facilitated informed decision-making on the need for additional studies and contributed to a more relevant human health risk assessment. This supplement also contains papers which describe in more detail the approach taken to establish the MoA and human relevance framework related to toxicities elicited by sulfoxaflor in the mammalian toxicology studies: developmental toxicity in rats mediated via the fetal muscle nicotinic acetylcholine receptor (nAChR) ( Ellis-Hutchings et al. 2014 ); liver tumors in rodents mediated via CAR/PXR ( LeBaron et al. 2014 ); and Leydig cell tumors in Fischer 344 rats ( Rasoulpour et al. 2014 ).


Assuntos
Agroquímicos/toxicidade , Inseticidas/toxicidade , Piridinas/toxicidade , Compostos de Enxofre/toxicidade , Testes de Toxicidade/métodos , Bem-Estar do Animal , Animais , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Piridinas/farmacocinética , Medição de Risco , Compostos de Enxofre/farmacocinética
17.
Crit Rev Toxicol ; 44 Suppl 2: 15-24, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24832551

RESUMO

Sulfoxaflor, a novel active substance that targets sap-feeding insects, induced rodent hepatotoxicity when administered at high dietary doses. Specifically, hepatocellular adenomas and carcinomas increased after 18 months in male and female CD-1 mice at 750 and 1250 ppm, respectively, and hepatocellular adenomas increased after 2 years in male F344 rats at 500 ppm. Studies to determine the mode of action (MoA) for these liver tumors were performed in an integrated and prospective manner as part of the standard battery of toxicology studies such that the MoA data were available prior to, or by the time of, the completion of the carcinogenicity studies. Sulfoxaflor is not genotoxic and the MoA data support the following key events in the etiology of the rodent liver tumors: (1) CAR nuclear receptor activation and (2) hepatocellular proliferation. The MoA data were evaluated in a weight of evidence approach using the Bradford Hill criteria for causation and were found to align with dose and temporal concordance, biological plausibility, coherence, strength, consistency, and specificity for a CAR-mediated MoA while excluding other alternate MoAs. The available data include: activation of CAR, Cyp2b induction, hepatocellular hypertrophy and hyperplasia, absence of liver effects in KO mice, absence of proliferation in humanized mice, and exclusion of other possible mechanisms (e.g., genotoxicity, cytotoxicity, AhR, or PPAR activation), and indicate that the identified rodent liver tumor MoA for sulfoxaflor would not occur in humans. In this case, sulfoxaflor is considered not to be a potential human liver carcinogen.


Assuntos
Inseticidas/toxicidade , Neoplasias Hepáticas/patologia , Piridinas/toxicidade , Compostos de Enxofre/toxicidade , Animais , Carcinógenos/toxicidade , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Neoplasias Hepáticas/induzido quimicamente , Masculino , Camundongos , Ratos , Ratos Endogâmicos F344 , Medição de Risco
18.
Crit Rev Toxicol ; 44 Suppl 2: 25-44, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24832552

RESUMO

Sulfoxaflor, a molecule that targets sap-feeding insects, was assessed for carcinogenic potential in groups of 50 Fischer rats fed with diets containing 0, 25, 100, 500 (males), or 750 (females) ppm sulfoxaflor for 2 years according to OECD 453. Sulfoxaflor did not alter the number of rats with Leydig cell tumors (LCTs: 88% of controls and 90-92% in treated groups). The size of LCT was increased at 100 and 500 ppm. The spontaneous incidence of LCT in Fischer rat is 75-100% compared with less than 0.01% in humans. These fundamental interspecies differences in spontaneous incidence of LCT are the result of quantitative and qualitative differences in Leydig cell response to hormonal stimuli. There are nine known modes of actions (MoA) for LCT induction. Analysis sulfoxaflor data suggested a hormone-based dopamine enhancement MoA causing the LCT effect through: 1) increased neuronal dopamine release via specific dopaminergic neuron-based nicotinic acetylcholine receptor (nAChR) agonism, leading to 2) decreased serum prolactin (Prl) levels, 3) downregulation of luteinizing hormone receptor (LHR) gene expression in Leydig cells, 4) transient decreases in serum testosterone, 5) increased serum LH levels, and 6) promotion of LCTs. The analysis suggested that sulfoxaflor promoted LCTs through a subtle stimulation of dopamine release. The MoA for LCT promotion in the carcinogenicity study is considered to have no relevance to humans due to qualitative and quantitative differences between rat and human Leydig cells. Therefore, the Fischer 344 rat LCT promotion associated with lifetime administration of high-dose levels of sulfoxaflor would not pose a cancer hazard to humans.


Assuntos
Tumor de Células de Leydig/patologia , Piridinas/toxicidade , Compostos de Enxofre/toxicidade , Animais , Carcinógenos/toxicidade , Modelos Animais de Doenças , Humanos , Tumor de Células de Leydig/induzido quimicamente , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/patologia , Masculino , Ratos
19.
Crit Rev Toxicol ; 44 Suppl 2: 45-62, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24832553

RESUMO

Sulfoxaflor (CAS# 946578-00-3) is a novel active substance with insecticidal properties mediated via its agonism on the highly abundant insect nicotinic acetylcholine receptor (nAChR). In developmental and reproductive toxicity studies, gestational exposure caused fetal abnormalities (primarily limb contractures) and reduced neonatal survival in rats, but not rabbits, following high-dose dietary exposure. Sulfoxaflor induced these effects via a novel mode of action (MoA) mediated by the fetal-type muscle nAChR with the following key events: (1) binding to the receptor, (2) agonism on the receptor, causing (3) sustained muscle contracture in the near-term fetus and neonatal offspring. This sustained muscle contracture results in misshapen limbs, bent clavicles, and reduced diaphragm function, which compromises respiration in neonatal rats at birth, reducing their survival. This review evaluates the weight of evidence for this MoA based upon the Bradford Hill criteria, includes a cross-comparison of applied and internal doses in a variety of in vitro, ex vivo, and in vivo study designs, examines alternative MoAs, and applies a Human relevance framework (HRF) to ascertain human risk for this rat MoA. The review indicated, with a high level of confidence, that the sulfoxaflor-induced fetal abnormalities and neonatal death in rats occur via a single MoA comprising sustained activation of the rat fetal-type muscle nAChR resulting in a sustained muscle contracture. This MoA is considered not relevant to humans, given fundamental qualitative differences in sulfoxaflor agonism on the rat versus the human muscle nAChR. Specifically, sulfoxaflor does not cause agonism on either the human fetal- or adult-type muscle nAChR.


Assuntos
Inseticidas/toxicidade , Piridinas/toxicidade , Compostos de Enxofre/toxicidade , Animais , Carcinógenos/toxicidade , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Contração Muscular/efeitos dos fármacos , Proteínas Musculares/metabolismo , Ratos , Receptores Nicotínicos/metabolismo , Reprodução/efeitos dos fármacos
20.
Toxicol Appl Pharmacol ; 270(2): 164-73, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23607986

RESUMO

Registration of new plant protection products (e.g., herbicide, insecticide, or fungicide) requires comprehensive mammalian toxicity evaluation including carcinogenicity studies in two species. The outcome of the carcinogenicity testing has a significant bearing on the overall human health risk assessment of the substance and, consequently, approved uses for different crops across geographies. In order to understand the relevance of a specific tumor finding to human health, a systematic, transparent, and hypothesis-driven mode of action (MoA) investigation is, appropriately, an expectation by the regulatory agencies. Here, we describe a novel approach of prospectively generating the MoA data by implementing additional end points to the standard guideline toxicity studies with sulfoxaflor, a molecule in development. This proactive MoA approach results in a more robust integration of molecular with apical end points while minimizing animal use. Sulfoxaflor, a molecule targeting sap-feeding insects, induced liver effects (increased liver weight due to hepatocellular hypertrophy) in an initial palatability probe study for selecting doses for subsequent repeat-dose dietary studies. This finding triggered the inclusion of dose-response investigations of the potential key events for rodent liver carcinogenesis, concurrent with the hazard assessment studies. As predicted, sulfoxaflor induced liver tumors in rats and mice in the bioassays. The MoA data available by the time of the carcinogenicity finding supported the conclusion that the carcinogenic potential of sulfoxaflor was due to CAR/PXR nuclear receptor activation with subsequent hepatocellular proliferation. This MoA was not considered to be relevant to humans as sulfoxaflor is unlikely to induce hepatocellular proliferation in humans and therefore would not be a human liver carcinogen.


Assuntos
Inseticidas/toxicidade , Fígado/efeitos dos fármacos , Piridinas/toxicidade , Compostos de Enxofre/toxicidade , Testes de Toxicidade/métodos , Animais , Proliferação de Células/efeitos dos fármacos , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP2B1/metabolismo , Relação Dose-Resposta a Droga , Feminino , Inseticidas/administração & dosagem , Fígado/enzimologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Estudos Prospectivos , Piridinas/administração & dosagem , RNA/química , RNA/genética , Ratos , Ratos Endogâmicos F344 , Reação em Cadeia da Polimerase em Tempo Real , Compostos de Enxofre/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...