Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 560
Filtrar
1.
PLoS Pathog ; 20(7): e1012382, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38991025

RESUMO

Liposomal amphotericin B is an important frontline drug for the treatment of visceral leishmaniasis, a neglected disease of poverty. The mechanism of action of amphotericin B (AmB) is thought to involve interaction with ergosterol and other ergostane sterols, resulting in disruption of the integrity and key functions of the plasma membrane. Emergence of clinically refractory isolates of Leishmania donovani and L. infantum is an ongoing issue and knowledge of potential resistance mechanisms can help to alleviate this problem. Here we report the characterisation of four independently selected L. donovani clones that are resistant to AmB. Whole genome sequencing revealed that in three of the moderately resistant clones, resistance was due solely to the deletion of a gene encoding C24-sterol methyltransferase (SMT1). The fourth, hyper-resistant resistant clone (>60-fold) was found to have a 24 bp deletion in both alleles of a gene encoding a putative cytochrome P450 reductase (P450R1). Metabolic profiling indicated these parasites were virtually devoid of ergosterol (0.2% versus 18% of total sterols in wild-type) and had a marked accumulation of 14-methylfecosterol (75% versus 0.1% of total sterols in wild-type) and other 14-alpha methylcholestanes. These are substrates for sterol 14-alpha demethylase (CYP51) suggesting that this enzyme may be a bona fide P450R specifically involved in electron transfer from NADPH to CYP51 during catalysis. Deletion of P450R1 in wild-type cells phenocopied the metabolic changes observed in our AmB hyper-resistant clone as well as in CYP51 nulls. Likewise, addition of a wild type P450R1 gene restored sterol profiles to wild type. Our studies indicate that P450R1 is essential for L. donovani amastigote viability, thus loss of this gene is unlikely to be a driver of clinical resistance. Nevertheless, investigating the mechanisms underpinning AmB resistance in these cells provided insights that refine our understanding of the L. donovani sterol biosynthetic pathway.


Assuntos
Resistência a Medicamentos , Leishmania donovani , Leishmaniose Visceral , Esterol 14-Desmetilase , Leishmania donovani/enzimologia , Esterol 14-Desmetilase/metabolismo , Esterol 14-Desmetilase/genética , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/tratamento farmacológico , Anfotericina B/farmacologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , Antiprotozoários/farmacologia , Humanos , Ergosterol/metabolismo
2.
Structure ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39002540

RESUMO

Bacterial conjugation is a process by which DNA is transferred unidirectionally from a donor cell to a recipient cell. It is the main means by which antibiotic resistance genes spread among bacterial populations. It is crucially dependent upon the elaboration of an extracellular appendage, termed "pilus," by a large double-membrane-spanning secretion system termed conjugative "type IV secretion system." Here we present the structure of the conjugative pilus encoded by the R388 plasmid. We demonstrate that, as opposed to all conjugative pili produced so far for cryoelectron microscopy (cryo-EM) structure determination, the conjugative pilus encoded by the R388 plasmid is greatly stimulated by the presence of recipient cells. Comparison of its cryo-EM structure with existing conjugative pilus structures highlights a number of important differences between the R388 pilus structure and that of its homologs, the most prominent being the highly distinctive conformation of its bound lipid.

3.
Bioorg Med Chem Lett ; 110: 129883, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39013490

RESUMO

The protozoan parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. are responsible for continued propagation of neglected tropical diseases such as African sleeping sickness, Chagas disease and leishmaniasis respectively. Following a report that captopril targets Leishmania donovani dipeptidyl carboxypeptidase, a series of simple proline amides and captopril analogues were synthesized and found to exhibit 1-2 µM in vitro inhibition and selectivity against Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. The results were corroborated with computational docking studies. Arguably, the synthetic proline amides represent the structurally simplest examples of in vitro pan antiprotozoal compounds.


Assuntos
Captopril , Trypanosoma brucei brucei , Trypanosoma cruzi , Captopril/farmacologia , Captopril/química , Captopril/síntese química , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/síntese química , Estrutura Molecular , Leishmania/efeitos dos fármacos , Leishmania/enzimologia , Antiprotozoários/farmacologia , Antiprotozoários/química , Antiprotozoários/síntese química , Humanos
4.
Artigo em Inglês | MEDLINE | ID: mdl-38752592

RESUMO

BACKGROUND: Treatment optimization may require dosing flexibility. The Phase 3 JADE REGIMEN trial (NCT03627767) evaluated maintenance of abrocitinib 200 mg-induced response in patients with moderate-to-severe atopic dermatitis (AD) randomly assigned to subsequent maintenance with continuous-dose abrocitinib (200 mg), reduced-dose abrocitinib (100 mg) or placebo. Maintenance with continuous-dose abrocitinib was associated with a stronger prevention of disease flares, but also with a higher occurrence of adverse events, compared with the reduced dose. OBJECTIVE: This post hoc analysis of JADE REGIMEN aimed to identify predictors of not flaring during the maintenance period and to generate tools that can be used to assess probability of not flaring. METHODS: Data were analysed from patients who responded to abrocitinib 200 mg induction therapy (12 weeks) and were randomly assigned to receive abrocitinib (200 mg or 100 mg) or placebo in the 40-week maintenance period. Demographic and baseline disease characteristics and level of response to induction were evaluated for association with not flaring using logistic regression. Parameters with a significant (p < 0.15) interaction with the treatment arm were fitted into a multivariable regression model, which was used to assess probability of not flaring. RESULTS: Lower percentage body surface area affected at baseline (p = 0.09), absence of prior exposure to systemic agents (p = 0.02) and greater percentage change in EASI from baseline to randomization (p < 0.001) were identified as predictors of not flaring with abrocitinib. In both abrocitinib arms, percentage change in EASI from baseline to end of induction (Week 12) was the major contributor to the probability of not flaring in the maintenance period. CONCLUSIONS: Maintenance of response using reduced-dose abrocitinib 100 mg may be feasible for patients with lower baseline disease severity and strong response to abrocitinib 200 mg induction treatment.

5.
Appl Environ Microbiol ; 90(2): e0155323, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38259079

RESUMO

Anti-viral surface coatings are under development to prevent viral fomite transmission from high-traffic touch surfaces in public spaces. Copper's anti-viral properties have been widely documented, but the anti-viral mechanism of copper surfaces is not fully understood. We screened a series of metal and metal oxide surfaces for anti-viral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19). Copper and copper oxide surfaces exhibited superior anti-SARS-CoV-2 activity; however, the level of anti-viral activity was dependent on the composition of the carrier solution used to deliver virus inoculum. We demonstrate that copper ions released into solution from test surfaces can mediate virus inactivation, indicating a copper ion dissolution-dependent anti-viral mechanism. The level of anti-viral activity is, however, not dependent on the amount of copper ions released into solution per se. Instead, our findings suggest that degree of virus inactivation is dependent on copper ion complexation with other biomolecules (e.g., proteins/metabolites) in the virus carrier solution that compete with viral components. Although using tissue culture-derived virus inoculum is experimentally convenient to evaluate the anti-viral activity of copper-derived test surfaces, we propose that the high organic content of tissue culture medium reduces the availability of "uncomplexed" copper ions to interact with the virus, negatively affecting virus inactivation and hence surface anti-viral performance. We propose that laboratory anti-viral surface testing should include virus delivered in a physiologically relevant carrier solution (saliva or nasal secretions when testing respiratory viruses) to accurately predict real-life surface anti-viral performance when deployed in public spaces.IMPORTANCEThe purpose of evaluating the anti-viral activity of test surfaces in the laboratory is to identify surfaces that will perform efficiently in preventing fomite transmission when deployed on high-traffic touch surfaces in public spaces. The conventional method in laboratory testing is to use tissue culture-derived virus inoculum; however, this study demonstrates that anti-viral performance of test copper-containing surfaces is dependent on the composition of the carrier solution in which the virus inoculum is delivered to test surfaces. Therefore, we recommend that laboratory surface testing should include virus delivered in a physiologically relevant carrier solution to accurately predict real-life test surface performance in public spaces. Understanding the mechanism of virus inactivation is key to future rational design of improved anti-viral surfaces. Here, we demonstrate that release of copper ions from copper surfaces into small liquid droplets containing SARS-CoV-2 is a mechanism by which the virus that causes COVID-19 can be inactivated.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Cobre/farmacologia , Antivirais , Óxidos , Íons
6.
Nat Cancer ; 5(2): 283-298, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38195933

RESUMO

Lipids and their modifying enzymes regulate diverse features of the tumor microenvironment and cancer progression. The secreted enzyme autotaxin (ATX) hydrolyzes extracellular lysophosphatidylcholine to generate the multifunctional lipid mediator lysophosphatidic acid (LPA) and supports the growth of several tumor types, including pancreatic ductal adenocarcinoma (PDAC). Here we show that ATX suppresses the accumulation of eosinophils in the PDAC microenvironment. Genetic or pharmacologic ATX inhibition increased the number of intratumor eosinophils, which promote tumor cell apoptosis locally and suppress tumor progression. Mechanistically, ATX suppresses eosinophil accumulation via an autocrine feedback loop, wherein ATX-LPA signaling negatively regulates the activity of the AP-1 transcription factor c-Jun, in turn suppressing the expression of the potent eosinophil chemoattractant CCL11 (eotaxin-1). Eosinophils were identified in human PDAC specimens, and rare individuals with high intratumor eosinophil abundance had the longest overall survival. Together with recent findings, this study reveals the context-dependent, immune-modulatory potential of ATX-LPA signaling in cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Eosinófilos/metabolismo , Quimiocina CCL11 , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Processos Neoplásicos , Lisofosfatidilcolinas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Microambiente Tumoral
7.
Res Pract Thromb Haemost ; 8(1): 102276, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38226339

RESUMO

Background: Hyperlipidemia is associated with chronic inflammation and thromboinflammation. This is an underlying cause of several cardiovascular diseases, including atherosclerosis. In diseased blood vessels, rampant thrombin generation results in the initiation of the coagulation cascade, activation of platelets, and endothelial cell dysfunction. Coagulation factor (F) XI represents a promising therapeutic target to reduce thromboinflammation, as it is uniquely positioned at an intersection between inflammation and thrombin generation. Objectives: This study aimed to investigate the role of FXI in promoting platelet and endothelial cell activation in a model of hyperlipidemia. Methods: Nonhuman primates (NHPs) were fed a standard chow diet (lean, n = 6) or a high-fat diet (obese, n = 8) to establish a model of hyperlipidemia. Obese NHPs were intravenously administered a FXI blocking antibody (2 mg/kg) and studied at baseline and at 1, 7, 14, 21, and 28 days after drug administration. Platelet activation and inflammatory markers were measured using fluorescence-activated cell sorting or enzyme-linked immunosorbent assay. Molecular imaging was used to quantify vascular cell adhesion molecule 1 (VCAM-1) expression at the carotid bifurcation. Results: Obese NHPs demonstrated increased sensitivity for platelet P-selectin expression and phosphatidylserine exposure in response to platelet GPVI or PAR agonists compared with lean NHPs. Obese NHPs exhibited elevated levels of C-reactive protein, cathepsin D, and myeloperoxidase compared with lean NHPs. Following pharmacological inhibition of FIX activation by FXIa, platelet priming for activation by GPVI or PAR agonists, C-reactive protein levels, and endothelial VCAM-1 levels were reduced in obese NHPs. Conclusion: FXI activation promotes the proinflammatory phenotype of hyperlipidemia by priming platelet activation and inciting endothelial cell dysfunction.

8.
POCUS J ; 8(2): 184-192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099159

RESUMO

Background: Point of care ultrasound (POCUS) use has rapidly expanded among internal medicine (IM) physicians in practice and residency training programs. Many benefits have been established; however, studies demonstrating the impact of POCUS on system metrics are few and mostly limited to the emergency department or intensive care setting. The study objective was to evaluate the impact of inpatient POCUS on patient outcomes and hospitalization metrics. Methods: Prospective cohort study of 12,399 consecutive adult admissions to 22 IM teaching attendings, at a quaternary care teaching hospital (7/1/2011-6/30/2015), with or without POCUS available during a given hospitalization. Multivariable regression and propensity score matching (PSM) analyses compared multiple hospital metric outcomes (costs, length of stay, radiology-based imaging, satisfaction, etc.) between the "POCUS available" vs. "POCUS unavailable" groups as well as the "POCUS available" subgroups of "POCUS used" vs. "POCUS not used". Results: Patients in the "POCUS available" vs. "POCUS unavailable" group had lower mean total and per-day hospital costs ($17,474 vs. $21,803, p<0.001; $2,805.88 vs. $3,557.53, p<0.001), lower total and per-day radiology cost ($705.41 vs. $829.12, p<0.001; $163.11 vs. $198.53, p<0.001), fewer total chest X-rays (1.31 vs. 1.55, p=0.01), but more chest CTs (0.22 vs 0.15; p=0.001). Mean length of stay (LOS) was 5.77 days (95% CI = 5.63, 5.91) in the "POCUS available" group vs. 6.08 95% CI (5.66, 6.51) in the "POCUS unavailable" group (p=0.14). Within the "POCUS available" group, cost analysis with a 4:1 PSM (including LOS as a covariate) compared patients receiving POCUS vs. those that could have but did not, and also showed total and per-day cost savings in the "POCUS used" subgroup ($15,082 vs. 15,746; p<0.001 and $2,685 vs. $2,753; p=0.04). Conclusions: Availability and selected use of POCUS was associated with a meaningful reduction in total hospitalization cost, radiology cost, and chest X-rays for hospitalized patients.

9.
Nat Commun ; 14(1): 8438, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114483

RESUMO

The type VII protein secretion system (T7SS) is found in many Gram-positive bacteria and in pathogenic mycobacteria. All T7SS substrate proteins described to date share a common helical domain architecture at the N-terminus that typically interacts with other helical partner proteins, forming a composite signal sequence for targeting to the T7SS. The C-terminal domains are functionally diverse and in Gram-positive bacteria such as Staphylococcus aureus often specify toxic anti-bacterial activity. Here we describe the first example of a class of T7 substrate, TslA, that has a reverse domain organisation. TslA is widely found across Bacillota including Staphylococcus, Enterococcus and Listeria. We show that the S. aureus TslA N-terminal domain is a phospholipase A with anti-staphylococcal activity that is neutralised by the immunity lipoprotein TilA. Two small helical partner proteins, TlaA1 and TlaA2 are essential for T7-dependent secretion of TslA and at least one of these interacts with the TslA C-terminal domain to form a helical stack. Cryo-EM analysis of purified TslA complexes indicate that they share structural similarity with canonical T7 substrates. Our findings suggest that the T7SS has the capacity to recognise a secretion signal present at either end of a substrate.


Assuntos
Proteínas de Bactérias , Toxinas Biológicas , Proteínas de Bactérias/metabolismo , Staphylococcus aureus/metabolismo , Lipase/metabolismo , Toxinas Biológicas/metabolismo , Transporte Biológico
10.
Nat Microbiol ; 8(11): 2020-2032, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37828246

RESUMO

Trypanosoma brucei causes African trypanosomiasis, colonizing adipose tissue and inducing weight loss. Here we investigated the molecular mechanisms responsible for adipose mass loss and its impact on disease pathology. We found that lipolysis is activated early in infection. Mice lacking B and T lymphocytes fail to upregulate adipocyte lipolysis, resulting in higher fat mass retention. Genetic ablation of the rate-limiting adipose triglyceride lipase specifically from adipocytes (AdipoqCre/+-Atglfl/fl) prevented the stimulation of adipocyte lipolysis during infection, reducing fat mass loss. Surprisingly, these mice succumbed earlier and presented a higher parasite burden in the gonadal adipose tissue, indicating that host lipolysis limits parasite growth. Consistently, free fatty acids comparable with those of adipose interstitial fluid induced loss of parasite viability. Adipocyte lipolysis emerges as a mechanism controlling local parasite burden and affecting the loss of fat mass in African trypanosomiasis.


Assuntos
Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Camundongos , Lipólise/genética , Trypanosoma brucei brucei/metabolismo , Lipase/genética , Adipócitos/metabolismo , Adipócitos/patologia , Obesidade
11.
PLoS One ; 18(9): e0289492, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37713373

RESUMO

The emergence of drug resistance in cutaneous leishmaniasis (CL) has become a major problem over the past decades. The spread of resistant phenotypes has been attributed to the wide misuse of current antileishmanial chemotherapy, which is a serious threat to global health. Photodynamic therapy (PDT) has been shown to be effective against a wide spectrum of drug-resistant pathogens. Due to its multi-target approach and immediate effects, it may be an attractive strategy for treatment of drug-resistant Leishmania species. In this study, we sought to evaluate the activity of PDT in vitro using the photosensitizer 1,9-dimethyl methylene blue (DMMB), against promastigotes of two Leishmania amazonensis strains: the wild-type (WT) and a lab induced miltefosine-resistant (MFR) strain. The underlying mechanisms of DMMB-PDT action upon the parasites was focused on the changes in the lipid metabolism of both strains, which was conducted by a quantitative lipidomics analysis. We also assessed the production of ROS, mitochondrial labeling and lipid droplets accumulation after DMMB-PDT. Our results show that DMMB-PDT produced high levels of ROS, promoting mitochondrial membrane depolarization due to the loss of membrane potential. In addition, both untreated strains revealed some differences in the lipid content, in which MFR parasites showed increased levels of phosphatidylcholine, hence suggesting this could also be related to their mechanism of resistance to miltefosine. Moreover, the oxidative stress and consequent lipid peroxidation led to significant phospholipid alterations, thereby resulting in cellular dysfunction and parasite death. Thus, our results demonstrated that DMMB-mediated PDT is effective to kill L. amazonensis MFR strain and should be further studied as a potential strategy to overcome antileishmanial drug resistance.


Assuntos
Leishmania mexicana , Leishmania , Lipidômica , Espécies Reativas de Oxigênio
12.
PLoS Negl Trop Dis ; 17(9): e0011646, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37729272

RESUMO

Sphingolipids (SLs) are essential components of all eukaryotic cellular membranes. In fungi, plants and many protozoa, the primary SL is inositol-phosphorylceramide (IPC). Trypanosoma cruzi is a protozoan parasite that causes Chagas disease (CD), a chronic illness for which no vaccines or effective treatments are available. IPC synthase (IPCS) has been considered an ideal target enzyme for drug development because phosphoinositol-containing SL is absent in mammalian cells and the enzyme activity has been described in all parasite forms of T. cruzi. Furthermore, IPCS is an integral membrane protein conserved amongst other kinetoplastids, including Leishmania major, for which specific inhibitors have been identified. Using a CRISPR-Cas9 protocol, we generated T. cruzi knockout (KO) mutants in which both alleles of the IPCS gene were disrupted. We demonstrated that the lack of IPCS activity does not affect epimastigote proliferation or its susceptibility to compounds that have been identified as inhibitors of the L. major IPCS. However, disruption of the T. cruzi IPCS gene negatively affected epimastigote differentiation into metacyclic trypomastigotes as well as proliferation of intracellular amastigotes and differentiation of amastigotes into tissue culture-derived trypomastigotes. In accordance with previous studies suggesting that IPC is a membrane component essential for parasite survival in the mammalian host, we showed that T. cruzi IPCS null mutants are unable to establish an infection in vivo, even in immune deficient mice.


Assuntos
Doença de Chagas , Leishmania major , Trypanosoma cruzi , Camundongos , Animais , Leishmania major/genética , Diferenciação Celular , Inositol/metabolismo , Inositol/farmacologia , Mamíferos
13.
PLoS Pathog ; 19(8): e1011274, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37549143

RESUMO

Zika virus (ZIKV) can be transmitted vertically from mother to fetus during pregnancy, resulting in a range of outcomes including severe birth defects and fetal/infant death. Potential pathways of vertical transmission in utero have been proposed but remain undefined. Identifying the timing and routes of vertical transmission of ZIKV may help us identify when interventions would be most effective. Furthermore, understanding what barriers ZIKV overcomes to effect vertical transmission may help improve models for evaluating infection by other pathogens during pregnancy. To determine the pathways of vertical transmission, we inoculated 12 pregnant rhesus macaques with an African-lineage ZIKV at gestational day 30 (term is 165 days). Eight pregnancies were surgically terminated at either seven or 14 days post-maternal infection. Maternal-fetal interface and fetal tissues and fluids were collected and evaluated for ZIKV using RT-qPCR, in situ hybridization, immunohistochemistry, and plaque assays. Four additional pregnant macaques were inoculated and terminally perfused with 4% paraformaldehyde at three, six, nine, or ten days post-maternal inoculation. For these four cases, the entire fixed pregnant uterus was evaluated with in situ hybridization for ZIKV RNA. We determined that ZIKV can reach the MFI by six days after infection and infect the fetus by ten days. Infection of the chorionic membrane and the extraembryonic coelomic fluid preceded infection of the fetus and the mesenchymal tissue of the placental villi. We did not find evidence to support a transplacental route of ZIKV vertical transmission via infection of syncytiotrophoblasts or villous cytotrophoblasts. The pattern of infection observed in the maternal-fetal interface provides evidence of paraplacental vertical ZIKV transmission through the chorionic membrane, the outer layer of the fetal membranes.


Assuntos
Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Humanos , Animais , Gravidez , Feminino , Zika virus/genética , Macaca mulatta , Placenta , Complicações Infecciosas na Gravidez/metabolismo , Morte Fetal , Transmissão Vertical de Doenças Infecciosas , Membranas Extraembrionárias/metabolismo
14.
PLoS One ; 18(5): e0284964, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37141276

RESUMO

BACKGROUND: Congenital Zika virus (ZIKV) infection can result in birth defects, including malformations in the fetal brain and visual system. There are two distinct genetic lineages of ZIKV: African and Asian. Asian-lineage ZIKVs have been associated with adverse pregnancy outcomes in humans; however, recent evidence from experimental models suggests that African-lineage viruses can also be vertically transmitted and cause fetal harm. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate the pathway of vertical transmission of African-lineage ZIKV, we inoculated nine pregnant rhesus macaques (Macaca mulatta) subcutaneously with 44 plaque-forming units of a ZIKV strain from Senegal, (ZIKV-DAK). Dams were inoculated either at gestational day 30 or 45. Following maternal inoculation, pregnancies were surgically terminated seven or 14 days later and fetal and maternal-fetal interface tissues were collected and evaluated. Infection in the dams was evaluated via plasma viremia and neutralizing antibody titers pre- and post- ZIKV inoculation. All dams became productively infected and developed strong neutralizing antibody responses. ZIKV RNA was detected in maternal-fetal interface tissues (placenta, decidua, and fetal membranes) by RT-qPCR and in situ hybridization. In situ hybridization detected ZIKV predominantly in the decidua and revealed that the fetal membranes may play a role in ZIKV vertical transmission. Infectious ZIKV was detected in the amniotic fluid of three pregnancies and one fetus had ZIKV RNA detected in multiple tissues. No significant pathology was observed in any fetus; and ZIKV did not have a substantial effect on the placenta. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that a very low dose of African-lineage ZIKV can be vertically transmitted to the macaque fetus during pregnancy. The low inoculating dose used in this study suggests a low minimal infectious dose for rhesus macaques. Vertical transmission with a low dose in macaques further supports the high epidemic potential of African ZIKV strains.


Assuntos
Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Humanos , Animais , Feminino , Gravidez , Zika virus/genética , Macaca mulatta/genética , Complicações Infecciosas na Gravidez/veterinária , Líquido Amniótico/metabolismo , Anticorpos Neutralizantes , Transmissão Vertical de Doenças Infecciosas/veterinária , RNA , Modelos Animais de Doenças
15.
NAR Cancer ; 5(2): zcad016, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37089813

RESUMO

Stromal cells promote extensive fibrosis in pancreatic ductal adenocarcinoma (PDAC), which is associated with poor prognosis and therapeutic resistance. We report here for the first time that loss of the RNA-binding protein human antigen R (HuR, ELAVL1) in PDAC cells leads to reprogramming of the tumor microenvironment. In multiple in vivo models, CRISPR deletion of ELAVL1 in PDAC cells resulted in a decrease of collagen deposition, accompanied by a decrease of stromal markers (i.e. podoplanin, α-smooth muscle actin, desmin). RNA-sequencing data showed that HuR plays a role in cell-cell communication. Accordingly, cytokine arrays identified that HuR regulates the secretion of signaling molecules involved in stromal activation and extracellular matrix organization [i.e. platelet-derived growth factor AA (PDGFAA) and pentraxin 3]. Ribonucleoprotein immunoprecipitation analysis and transcription inhibition studies validated PDGFA mRNA as a novel HuR target. These data suggest that tumor-intrinsic HuR supports extrinsic activation of the stroma to produce collagen and desmoplasia through regulating signaling molecules (e.g. PDGFAA). HuR-deficient PDAC in vivo tumors with an altered tumor microenvironment are more sensitive to the standard of care gemcitabine, as compared to HuR-proficient tumors. Taken together, we identified a novel role of tumor-intrinsic HuR in its ability to modify the surrounding tumor microenvironment and regulate PDGFAA.

16.
Fertil Steril ; 120(1): 163-174, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36990913

RESUMO

OBJECTIVE: To determine whether discontinuation of delta-9-tetrahydrocannabinol (THC) use mitigates THC-associated changes in male reproductive health using a rhesus macaque model of daily THC edible consumption. DESIGN: Research animal study. SETTING: Research institute environment. PATIENT(S): Adult male rhesus macaques (age, 8-10 years; n = 6). INTERVENTION(S): Chronic daily THC edible administration at medically and recreationally relevant contemporary doses followed by cessation of THC use. MAIN OUTCOME MEASURE(S): Testicular volume, serum male hormones, semen parameters, sperm deoxyribonucleic acid (DNA) fragmentation, seminal fluid proteomics, and whole genome bisulfite sequencing of sperm DNA. RESULT(S): Chronic THC use resulted in significant testicular atrophy, increased gonadotropin levels, decreased serum sex steroid levels, changes in seminal fluid proteome, and increased DNA fragmentation with partial recovery after discontinuation of THC use. For every increase of 1 mg/7 kg/day in THC dosing, there was a significant decrease in the total testicular volume bilaterally by 12.6 cm3 (95% confidence interval [CI], 10.6-14.5), resulting in a 59% decrease in volume. With THC abstinence, the total testicular volume increased to 73% of its original volume. Similarly, with THC exposure, there were significant decreases in the mean total testosterone and estradiol levels and a significant increase in the follicle-stimulating hormone level. With increasing THC dose, there was a significant decrease in the liquid semen ejaculate volume and weight of coagulum; however, no other significant changes in the other semen parameters were noted. After discontinuing THC use, there was a significant increase in the total serum testosterone level by 1.3 ng/mL (95% CI, 0.1-2.4) and estradiol level by 2.9 pg/mL (95% CI, 0.4-5.4), and the follicle-stimulating hormone level significantly decreased by 0.06 ng/mL (95% CI, 0.01-0.11). Seminal fluid proteome analysis revealed differential expression of proteins enriched for processes related to cellular secretion, immune response, and fibrinolysis. Whole genome bisulfite sequencing identified 23,558 CpGs differentially methylated in heavy-THC vs. pre-THC sperm, with partial restoration of methylation after discontinuation of THC use. Genes associated with altered differentially methylated regions were enriched for those involved in the development and function of the nervous system. CONCLUSION(S): This is the first study demonstrating that discontinuation of chronic THC use in rhesus macaques partially restores adverse impacts to male reproductive health, THC-associated sperm differentially methylated regions in genes important for development, and expression of proteins important for male fertility.


Assuntos
Dronabinol , Sêmen , Animais , Masculino , Macaca mulatta , Epigenoma , Proteoma , Espermatozoides/fisiologia , Testosterona , Hormônio Foliculoestimulante , Fertilidade , Estradiol , DNA , Contagem de Espermatozoides
17.
PLoS Pathog ; 19(3): e1011282, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36976812

RESUMO

In the 2016 Zika virus (ZIKV) pandemic, a previously unrecognized risk of birth defects surfaced in babies whose mothers were infected with Asian-lineage ZIKV during pregnancy. Less is known about the impacts of gestational African-lineage ZIKV infections. Given high human immunodeficiency virus (HIV) burdens in regions where African-lineage ZIKV circulates, we evaluated whether pregnant rhesus macaques infected with simian immunodeficiency virus (SIV) have a higher risk of African-lineage ZIKV-associated birth defects. Remarkably, in both SIV+ and SIV- animals, ZIKV infection early in the first trimester caused a high incidence (78%) of spontaneous pregnancy loss within 20 days. These findings suggest a significant risk for early pregnancy loss associated with African-lineage ZIKV infection and provide the first consistent ZIKV-associated phenotype in macaques for testing medical countermeasures.


Assuntos
Aborto Espontâneo , Complicações Infecciosas na Gravidez , Vírus da Imunodeficiência Símia , Infecção por Zika virus , Zika virus , Gravidez , Feminino , Animais , Humanos , Zika virus/genética , Macaca mulatta , Primeiro Trimestre da Gravidez
18.
Artigo em Inglês | MEDLINE | ID: mdl-36786318

RESUMO

Since the outbreak of SARS-CoV-2, a multitude of strategies have been explored for the means of protection and shielding against virus particles: filtration equipment (PPE) has been widely used in daily life. In this work, we explore another approach in the form of deactivating coronavirus particles through selective binding onto the surface of metal-organic frameworks (MOFs) to further the fight against the transmission of respiratory viruses. MOFs are attractive materials in this regard, as their rich pore and surface chemistry can easily be modified on demand. The surfaces of three MOFs, UiO-66(Zr), UiO-66-NH2(Zr), and UiO-66-NO2(Zr), have been functionalized with repurposed antiviral agents, namely, folic acid, nystatin, and tenofovir, to enable specific interactions with the external spike protein of the SARS virus. Protein binding studies revealed that this surface modification significantly improved the binding affinity toward glycosylated and non-glycosylated proteins for all three MOFs. Additionally, the pores for the surface-functionalized MOFs can adsorb water, making them suitable for locally dehydrating microbial aerosols. Our findings highlight the immense potential of MOFs in deactivating respiratory coronaviruses to be better equipped to fight future pandemics.

19.
PLoS Pathog ; 19(2): e1011147, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36780551

RESUMO

Host-specific plant pathogens must coordinate their life cycles with the availability of a host plant. Although this is frequently achieved through a response to specific chemical cues derived from the host plant, little is known about the molecular basis of the response to such cues and how these are used to trigger activation of the life cycle. In host-specific plant-parasitic cyst nematodes, unhatched juvenile nematodes lie dormant in the eggshell until chemical cues from a suitable host plant are detected and the hatching process is initiated. The molecular mechanisms by which hatch is linked to the presence of these chemical cues is unknown. We have identified a novel annexin-like protein that is localised to the eggshell of the potato cyst nematode Globodera rostochiensis. This annexin is unique in having a short peptide insertion that structural modelling predicts is present in one of the calcium-binding sites of this protein. Host-induced gene silencing of the annexin impacts the ability of the nematode to regulate and control permeability of the eggshell. We show that in the presence of the chemicals that induce hatching annexin lipid binding capabilities change, providing the first molecular link between a nematode eggshell protein and host-derived cues. This work demonstrates how a protein from a large family has been recruited to play a critical role in the perception of the presence of a host and provides a new potential route for control of cyst nematodes that impact global food production.


Assuntos
Parasitos , Tylenchoidea , Animais , Anexinas , Casca de Ovo , Plantas , Estágios do Ciclo de Vida
20.
Am J Obstet Gynecol ; 228(2): 187-202, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35973475

RESUMO

The importance of a fully functioning placenta for a good pregnancy outcome is unquestioned. Loss of function can lead to pregnancy complications and is often detected by a thorough placental pathologic examination. Placental pathology has advanced the science and practice of obstetrics and neonatal-perinatal medicine by classifying diseases according to underlying biology and specific patterns of injury. Many past obstacles have limited the incorporation of placental findings into both clinical studies and day-to-day practice. Limitations have included variability in the nomenclature used to describe placental lesions, a shortage of perinatal pathologists fully competent to analyze placental specimens, and a troubling lack of understanding of placental diagnoses by clinicians. However, the potential use of placental pathology for phenotypic classification, improved understanding of the biology of adverse pregnancy outcomes, the development of treatment and prevention, and patient counseling has never been greater. This review, written partly in response to a recent critique published in a major obstetrics-gynecology journal, reexamines the role of placental pathology by reviewing current concepts of biology; explaining the most recent terminology; emphasizing the usefulness of specific diagnoses for obstetrician-gynecologists, neonatologists, and patients; previewing upcoming changes in recommendations for placental submission; and suggesting future improvements. These improvements should include further consideration of overall healthcare costs, cost-effectiveness, the clinical value added of placental assessment, improvements in placental pathology education and practice, and leveraging of placental pathology to identify new biomarkers of disease and evaluate novel therapies tailored to specific clinicopathologic phenotypes of both women and infants.


Assuntos
Placenta , Complicações na Gravidez , Humanos , Gravidez , Feminino , Placenta/patologia , Resultado da Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...