Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(18): 185101, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37977609

RESUMO

High-performance fusion plasmas, requiring high pressure ß, are not well understood in stellarator-type experiments. Here, the effect of ß on ion-temperature-gradient-driven (ITG) turbulence is studied in Wendelstein 7-X (W7-X), showing that subdominant kinetic ballooning modes (KBMs) are unstable well below the ideal MHD threshold and get strongly excited in the turbulence. By zonal-flow erosion, these subthreshold KBMs (stKBMs) affect ITG saturation and enable higher heat fluxes. Controlling stKBMs will be essential to allow W7-X and future stellarators to achieve maximum performance.

2.
Phys Rev Lett ; 126(2): 025004, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33512223

RESUMO

Near-resonant energy transfer to large-scale stable modes is shown to reduce transport above the linear critical gradient, contributing to the onset of transport at higher gradients. This is demonstrated for a threshold fluid theory of ion temperature gradient turbulence based on zonal-flow-catalyzed transfer. The heat flux is suppressed above the critical gradient by resonance in the triplet correlation time, a condition enforced by the wave numbers of the interaction of the unstable mode, zonal flow, and stable mode.

3.
Phys Rev Lett ; 122(10): 105001, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30932630

RESUMO

Zonal flow appears in toroidal, magnetically confined plasmas as part of the self-regulated interaction of turbulence and transport processes. For toroidal plasmas having a strong toroidal magnetic field, the zonal flow is predominately poloidally directed. This Letter reports the first observation of a zonal flow that is toroidally directed. The measurements are made just inside the last closed flux surface of reversed field pinch plasmas that have a dominant poloidal magnetic field. A limit cycle oscillation between the strength of the zonal flow and the amplitude of plasma potential fluctuations is observed, which provides evidence for the self-regulation characteristic of drift-wave-type plasma turbulence. The measurements help advance understanding and gyrokinetic modeling of toroidal plasmas in the pursuit of fusion energy.

4.
Phys Rev Lett ; 120(17): 175002, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29756837

RESUMO

The physical causes for the strong stabilizing effect of finite plasma ß on ion-temperature-gradient-driven turbulence, which far exceeds quasilinear estimates, are identified from nonlinear gyrokinetic simulations. The primary contribution stems from a resonance of frequencies in the dominant nonlinear interaction between the unstable mode, the stable mode, and zonal flows, which maximizes the triplet correlation time and therefore the energy transfer efficiency. A modification to mixing-length transport estimates is constructed, which reproduces nonlinear heat fluxes throughout the examined ß range.

5.
Phys Rev Lett ; 116(8): 085001, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26967418

RESUMO

Owing to complex geometry, gyrokinetic simulations in stellarator geometry produce large numbers of subdominant unstable and stable, near-orthogonal eigenmodes. Here, results based on the full eigenmode spectrum in stellarator geometry are presented for the first time. In the nonlinear state of a low-magnetic-shear ion-temperature-gradient-driven case, a multitude of these modes are active and imprint the system. Turbulent frequency spectra are broadband as a consequence, in addition to a nonlinear, narrow signature at electron frequencies. It is shown that successful quasilinear, mixing-length transport modeling is possible in stellarators, where it is essential to account for all subdominant unstable modes.

6.
Phys Rev Lett ; 112(9): 095002, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24655261

RESUMO

From numerical solutions of a gyrokinetic model for ion temperature gradient turbulence it is shown that nonlinear coupling is dominated by three-wave interactions that include spectral components of the zonal flow and damped subdominant modes. Zonal flows dissipate very little energy injected by the instability, but facilitate its transfer from the unstable mode to dissipative subdominant modes, in part due to the small frequency sum of such triplets. Although energy is transferred to higher wave numbers, consistent with shearing, a large fraction is transferred to damped subdominant modes within the instability range. This is a new aspect of regulation of turbulence by zonal flows.

7.
Phys Rev Lett ; 110(15): 155005, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-25167280

RESUMO

A hitherto unexplained feature of electromagnetic simulations of ion temperature gradient turbulence is the apparent failure of the transport levels to saturate for certain parameters; this effect, termed here nonzonal transition, has been referred to as the high-ß runaway. The resulting large heat fluxes are shown to be a consequence of reduced zonal flow activity, brought on by magnetic field perturbations shorting out flux surfaces.

8.
Phys Rev Lett ; 108(23): 235002, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-23003963

RESUMO

Nonlinear excitation of linearly stable microtearing modes--with zonal modes acting as a catalyst--is shown to be responsible for the near-ubiquitous magnetic stochasticity and associated electromagnetic electron heat transport in electromagnetic gyrokinetic simulations of plasma microturbulence.

9.
Phys Rev Lett ; 107(19): 195002, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-22181614

RESUMO

In this Letter we report an experimental study of fully developed anisotropic magnetic turbulence in a laboratory plasma. The turbulence has broad (narrow) spectral power in the perpendicular (parallel) direction to the local mean magnetic field extending beyond the ion cyclotron frequency. Its k[see symbol] spectrum is asymmetric in the ion and electron diamagnetic directions. The wave number scaling for the short wavelength fluctuations shows exponential falloff indicative of dissipation. A standing wave structure is found for the turbulence in the minor radial direction of the toroidal plasma.

10.
Phys Rev Lett ; 106(11): 115003, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21469869

RESUMO

In the context of toroidal gyrokinetic simulations, it is shown that a hierarchy of damped modes is excited in the nonlinear turbulent state. These modes exist at the same spatial scales as the unstable eigenmodes that drive the turbulence. The larger amplitude subdominant modes are weakly damped and exhibit smooth, large-scale structure in velocity space and in the direction parallel to the magnetic field. Modes with increasingly fine-scale structure are excited to decreasing amplitudes. In aggregate, damped modes define a potent energy sink. This leads to an overlap of the spatial scales of energy injection and peak dissipation, a feature that is in contrast with more traditional turbulent systems.

11.
Phys Rev Lett ; 103(14): 145002, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19905576

RESUMO

Noncollisional ion heating in laboratory and astrophysical plasmas and the mechanism of conversion of magnetic energy to ion thermal energy are not well understood. In the Madison Symmetric Torus reversed-field pinch experiment, ions are heated rapidly during impulsive reconnection, attaining temperatures exceeding hundreds of eV, often well in excess of the electron temperature. The energy budget of the ion heating and its mass scaling in hydrogen, deuterium, and helium plasmas were determined by measuring the fraction of the released magnetic energy converted to ion thermal energy. The fraction ranges from about 10%-30% and increases approximately as the square root of the ion mass. A simple model based on stochastic ion heating is proposed that is consistent with the experimental data.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(2 Pt 2): 026303, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17358418

RESUMO

The role of turbulence in current generation and self-excitation of magnetic fields has been studied in the geometry of a mechanically driven, spherical dynamo experiment, using a three-dimensional numerical computation. A simple impeller model drives a flow that can generate a growing magnetic field, depending on the magnetic Reynolds number Rm=micro0sigmaVa and the fluid Reynolds number Re=Vanu of the flow. For Re<420, the flow is laminar and the dynamo transition is governed by a threshold of Rmcrit=100, above which a growing magnetic eigenmode is observed that is primarily a dipole field transverse to the axis of symmetry of the flow. In saturation, the Lorentz force slows the flow such that the magnetic eigenmode becomes marginally stable. For Re>420 and Rm approximately 100 the flow becomes turbulent and the dynamo eigenmode is suppressed. The mechanism of suppression is a combination of a time varying large-scale field and the presence of fluctuation driven currents (such as those predicted by the mean-field theory), which effectively enhance the magnetic diffusivity. For higher Rm, a dynamo reappears; however, the structure of the magnetic field is often different from the laminar dynamo. It is dominated by a dipolar magnetic field aligned with the axis of symmetry of the mean-flow, which is apparently generated by fluctuation-driven currents. The magnitude and structure of the fluctuation-driven currents have been studied by applying a weak, axisymmetric seed magnetic field to laminar and turbulent flows. An Ohm's law analysis of the axisymmetric currents allows the fluctuation-driven currents to be identified. The magnetic fields generated by the fluctuations are significant: a dipole moment aligned with the symmetry axis of the mean-flow is generated similar to those observed in the experiment, and both toroidal and poloidal flux expulsion are observed.

13.
Phys Rev Lett ; 93(23): 235004, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15601168

RESUMO

The interaction of long-wavelength anisotropic drift waves with the plasma turbulence of electron density advection is shown to produce the inverse energy transfer that condenses onto zonal modes, despite the expectation of forward transfer on the basis of nonconservation of enstrophy. Wave triads with an unstable wave and two waves of a separate, damped spectrum carry the transfer, provided they satisfy a near-resonance condition dependent on turbulence level and wave number.

14.
Phys Rev Lett ; 89(20): 205001, 2002 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-12443482

RESUMO

Plasma zonal-flow excitation and saturation in fluid electron-drift-wave turbulence are studied spectrally. The zonal flow is a spectral condensation onto the zero-frequency linear-wave structure. In the representation diagonalizing the wave coupling that dominates interactions at long wavelengths, nonlinear triad interactions involving zero-frequency waves are greatly enhanced. Zonal modes are excited on both unstable and purely stable eigenmode branches. Coupling to the latter introduces robust, finite amplitude-induced damping of zonal flows, providing saturation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...