Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 136(14)2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37334742

RESUMO

Cisplatin is an effective platinum-based chemotherapeutic with several side effects, including ototoxicity. Cochlear cells have low rates of proliferation yet are highly susceptible to cisplatin. We hypothesised that cisplatin ototoxicity might be caused by cisplatin-protein interactions rather than cisplatin-DNA interactions. Two known cisplatin-binding proteins are involved in the stress granule (SG) response. SGs are a pro-survival mechanism involving formation of transient ribonucleoprotein complexes during stress. We examined the effects of cisplatin on SG dynamics and composition in cell lines derived from the cochlea and retinal pigment epithelium. Cisplatin-induced SGs are significantly diminished in size and quantity compared to arsenite-induced SGs and are persistent after 24 h recovery. Additionally, cisplatin pre-treated cells were unable to form a typical SG response to subsequent arsenite stress. Cisplatin-induced SGs had significant reductions in the sequestration of eIF4G and the proteins RACK1 and DDX3X. Live-cell imaging of Texas Red-conjugated cisplatin revealed its localisation to SGs and retention for at least 24 h. We show cisplatin-induced SGs have impaired assembly, altered composition and are persistent, providing evidence of an alternate mechanism for cisplatin-induced ototoxicity via an impaired SG response.


Assuntos
Arsenitos , Ototoxicidade , Humanos , Cisplatino/farmacologia , Arsenitos/toxicidade , Arsenitos/metabolismo , Ototoxicidade/metabolismo , Grânulos de Estresse , Grânulos Citoplasmáticos/metabolismo
2.
J Am Chem Soc ; 144(39): 18069-18074, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36136763

RESUMO

Lipids are key constituents of all cells, which express thousands of different lipid species. In most cases, it is not known why cells synthesize such diverse lipidomes, nor what regulates their metabolism. Although it is known that dividing cells specifically regulate their lipid content and that the correct lipid complement is required for successful division, it is unclear how lipids connect with the cell division machinery. Here, we report that the membrane protein stomatin is involved in the cytokinesis step of cell division. Although it is not a lipid biosynthetic enzyme, depletion of stomatin causes cells to change their lipidomes. These changes include specific lipid species, like ether lipids, and lipid families like phosphatidylcholines. Addition of exogenous phosphatidylcholines rescues stomatin-induced defects. These data suggest that stomatin interfaces with lipid metabolism. Stomatin has multiple contacts with the plasma membrane and we identify which sites are required for its role in cell division, as well as associated lipid shifts. We also show that stomatin's mobility on the plasma membrane changes during division, further supporting the requirement for a highly regulated physical interaction between membrane lipids and this newly identified cell division protein.


Assuntos
Metabolismo dos Lipídeos , Proteínas de Membrana , Divisão Celular , Éteres , Lipídeos de Membrana , Proteínas de Membrana/metabolismo , Fosfatidilcolinas
3.
J Am Chem Soc ; 143(22): 8305-8313, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34015219

RESUMO

Equipping DNA with hydrophobic anchors enables targeted interaction with lipid bilayers for applications in biophysics, cell biology, and synthetic biology. Understanding DNA-membrane interactions is crucial for rationally designing functional DNA. Here we study the interactions of hydrophobically tagged DNA with synthetic and cell membranes using a combination of experiments and atomistic molecular dynamics (MD) simulations. The DNA duplexes are rendered hydrophobic by conjugation to a terminal cholesterol anchor or by chemical synthesis of a charge-neutralized alkyl-phosphorothioate (PPT) belt. Cholesterol-DNA tethers to lipid vesicles of different lipid compositions and charges, while PPT DNA binding strongly depends on alkyl length, belt position, and headgroup charge. Divalent cations in the buffer can also influence binding. Our MD simulations directly reveal the complex structure and energetics of PPT DNA within a lipid membrane, demonstrating that longer alkyl-PPT chains provide the most stable membrane anchoring but may disrupt DNA base paring in solution. When tested on cells, cholesterol-DNA is homogeneously distributed on the cell surface, while alkyl-PPT DNA accumulates in clustered structures on the plasma membrane. DNA tethered to the outside of the cell membrane is distinguished from DNA spanning the membrane by nuclease and sphingomyelinase digestion assays. The gained fundamental insight on DNA-bilayer interactions will guide the rational design of membrane-targeting nanostructures.


Assuntos
DNA/química , Bicamadas Lipídicas/química , Fosfatos/química , Membrana Celular/química , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Estrutura Molecular
4.
Proc Natl Acad Sci U S A ; 115(9): 2138-2143, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29439200

RESUMO

During cytokinesis, a cleavage furrow generated by actomyosin ring contraction is restructured into the midbody, a platform for the assembly of the abscission machinery that controls the final separation of daughter cells. The polymerization state of F-actin is important during assembly, ingression, disassembly, and closure of the contractile ring and for the cytoskeletal remodeling that accompanies midbody formation and progression to abscission. Actin filaments must be cleared from the abscission sites before the final cut can take place. Although many conserved proteins interact with and influence the polymerization state of actin filaments, it is poorly understood how they regulate cytokinesis in higher eukaryotes. We report here that the actin capping protein (CP), a barbed end actin binding protein, participates in the control of actin polymerization during later stages of cytokinesis in human cells. Cells depleted of CP furrow and form early midbodies, but they fail cytokinesis. Appropriate recruitment of the ESCRT-III abscission machinery to the midbody is impaired, preventing the cell from progressing to the abscission stage. To generate actin filaments of optimal length, different actin nucleators, such as formins, balance CP's activity. Loss of actin capping activity leads to excessive accumulation of formin-based linear actin filaments. Depletion of the formin FHOD1 results in partial rescue of CP-induced cytokinesis failure, suggesting that it can antagonize CP activity during midbody maturation. Our work suggests that the actin cytoskeleton is remodeled in a stepwise manner during cytokinesis, with different regulators at different stages required for successful progression to abscission.


Assuntos
Proteínas de Capeamento de Actina/fisiologia , Citoesqueleto de Actina/fisiologia , Citocinese/fisiologia , Actinas , Membrana Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células Epiteliais/fisiologia , Epitélio Corneano/citologia , Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Forminas , Regulação da Expressão Gênica/fisiologia , Células HeLa , Humanos , Proteínas dos Microfilamentos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
5.
Nat Cell Biol ; 19(9): 1049-1060, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28825699

RESUMO

Polarized epithelia develop distinct cell surface domains, with the apical membrane acquiring characteristic morphological features such as microvilli. Cell polarization is driven by polarity determinants including the evolutionarily conserved partitioning-defective (PAR) proteins that are separated into distinct cortical domains. PAR protein segregation is thought to be a consequence of asymmetric actomyosin contractions. The mechanism of activation of apically polarized actomyosin contractility is unknown. Here we show that the Cdc42 effector MRCK activates myosin-II at the apical pole to segregate aPKC-Par6 from junctional Par3, defining the apical domain. Apically polarized MRCK-activated actomyosin contractility is reinforced by cooperation with aPKC-Par6 downregulating antagonistic RhoA-driven junctional actomyosin contractility, and drives polarization of cytosolic brush border determinants and apical morphogenesis. MRCK-activated polarized actomyosin contractility is required for apical differentiation and morphogenesis in vertebrate epithelia and Drosophila photoreceptors. Our results identify an apical origin of actomyosin-driven morphogenesis that couples cytoskeletal reorganization to PAR polarity signalling.


Assuntos
Membrana Celular/enzimologia , Polaridade Celular , Células Epiteliais/enzimologia , Miotonina Proteína Quinase/metabolismo , Actomiosina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Geneticamente Modificados , Células CACO-2 , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Cães , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/enzimologia , Genótipo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Células Madin Darby de Rim Canino , Proteínas de Membrana/metabolismo , Morfogênese , Miosina Tipo II/metabolismo , Miotonina Proteína Quinase/genética , Fenótipo , Células Fotorreceptoras de Invertebrados/enzimologia , Proteína Quinase C/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção , Proteína cdc42 de Ligação ao GTP/metabolismo
6.
Int J Biochem Cell Biol ; 64: 120-5, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25757376

RESUMO

The establishment and maintenance of epithelial polarity must be correctly controlled for normal development and homeostasis. Tight junctions (TJ) in vertebrates define apical and basolateral membrane domains in polarized epithelia via bi-directional, complex signalling pathways between TJ themselves and the cytoskeleton they are associated with. RhoGTPases are central to these processes and evidence suggests that their regulation is coordinated by interactions between GEFs and GAPs with junctional, cytoplasmic adapter proteins. In this InFocus review we determine that the expression, localization or stability of a variety of these adaptor proteins is altered in various cancers, potentially representing an important mechanistic link between loss of polarity and cancer. We focus here, on two well characterized RhoGTPases Cdc42 and RhoA who's GEFs and GAPs are predominantly localized to TJ via cytoplasmic adaptor proteins.


Assuntos
Neoplasias/enzimologia , Junções Íntimas/enzimologia , Proteínas rho de Ligação ao GTP/fisiologia , Animais , Moléculas de Adesão Celular/metabolismo , Polaridade Celular , Humanos , Neoplasias/patologia , Transdução de Sinais
7.
J Cell Biol ; 204(1): 111-27, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24379416

RESUMO

Epithelial cells develop morphologically characteristic apical domains that are bordered by tight junctions, the apical-lateral border. Cdc42 and its effector complex Par6-atypical protein kinase c (aPKC) regulate multiple steps during epithelial differentiation, but the mechanisms that mediate process-specific activation of Cdc42 to drive apical morphogenesis and activate the transition from junction formation to apical differentiation are poorly understood. Using a small interfering RNA screen, we identify Dbl3 as a guanine nucleotide exchange factor that is recruited by ezrin to the apical membrane, that is enriched at a marginal zone apical to tight junctions, and that drives spatially restricted Cdc42 activation, promoting apical differentiation. Dbl3 depletion did not affect junction formation but did affect epithelial morphogenesis and brush border formation. Conversely, expression of active Dbl3 drove process-specific activation of the Par6-aPKC pathway, stimulating the transition from junction formation to apical differentiation and domain expansion, as well as the positioning of tight junctions. Thus, Dbl3 drives Cdc42 signaling at the apical margin to regulate morphogenesis, apical-lateral border positioning, and apical differentiation.


Assuntos
Células Epiteliais/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Junções Íntimas/fisiologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células CACO-2 , Diferenciação Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/metabolismo , Cães , Células Epiteliais/metabolismo , Humanos , Células Madin Darby de Rim Canino , Proteínas de Membrana/metabolismo , Morfogênese/fisiologia , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Junções Íntimas/metabolismo
8.
PLoS One ; 7(11): e50188, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185572

RESUMO

Actinomyosin activity is an important driver of cell locomotion and has been shown to promote collective cell migration of epithelial sheets as well as single cell migration and tumor cell invasion. However, the molecular mechanisms underlying activation of cortical myosin to stimulate single cell movement, and the relationship between the mechanisms that drive single cell locomotion and those that mediate collective cell migration of epithelial sheets are incompletely understood. Here, we demonstrate that p114RhoGEF, an activator of RhoA that associates with non-muscle myosin IIA, regulates collective cell migration of epithelial sheets and tumor cell invasion. Depletion of p114RhoGEF resulted in specific spatial inhibition of myosin activation at cell-cell contacts in migrating epithelial sheets and the cortex of migrating single cells, but only affected double and not single phosphorylation of myosin light chain. In agreement, overall elasticity and contractility of the cells, processes that rely on persistent and more constant forces, were not affected, suggesting that p114RhoGEF mediates process-specific myosin activation. Locomotion was p114RhoGEF-dependent on Matrigel, which favors more roundish cells and amoeboid-like actinomyosin-driven movement, but not on fibronectin, which stimulates flatter cells and lamellipodia-driven, mesenchymal-like migration. Accordingly, depletion of p114RhoGEF led to reduced RhoA, but increased Rac activity. Invasion of 3D matrices was p114RhoGEF-dependent under conditions that do not require metalloproteinase activity, supporting a role of p114RhoGEF in myosin-dependent, amoeboid-like locomotion. Our data demonstrate that p114RhoGEF drives cortical myosin activation by stimulating myosin light chain double phosphorylation and, thereby, collective cell migration of epithelial sheets and amoeboid-like motility of tumor cells.


Assuntos
Células Epiteliais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Cadeias Leves de Miosina/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Pseudópodes/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Colágeno/química , Combinação de Medicamentos , Células Epiteliais/patologia , Epitélio Corneano/metabolismo , Epitélio Corneano/patologia , Fibronectinas/química , Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Laminina/química , Cadeias Leves de Miosina/genética , Miosina não Muscular Tipo IIA/genética , Fosforilação , Proteoglicanas/química , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pseudópodes/patologia , Fatores de Troca de Nucleotídeo Guanina Rho , Transdução de Sinais , Proteína rhoA de Ligação ao GTP/genética
9.
J Cell Biol ; 198(4): 677-93, 2012 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-22891260

RESUMO

Epithelial cell-cell adhesion and morphogenesis require dynamic control of actin-driven membrane remodeling. The Rho guanosine triphosphatase (GTPase) Cdc42 regulates sequential molecular processes during cell-cell junction formation; hence, mechanisms must exist that inactivate Cdc42 in a temporally and spatially controlled manner. In this paper, we identify SH3BP1, a GTPase-activating protein for Cdc42 and Rac, as a regulator of junction assembly and epithelial morphogenesis using a functional small interfering ribonucleic acid screen. Depletion of SH3BP1 resulted in loss of spatial control of Cdc42 activity, stalled membrane remodeling, and enhanced growth of filopodia. SH3BP1 formed a complex with JACOP/paracingulin, a junctional adaptor, and CD2AP, a scaffolding protein; both were required for normal Cdc42 signaling and junction formation. The filamentous actin-capping protein CapZ also associated with the SH3BP1 complex and was required for control of actin remodeling. Epithelial junction formation and morphogenesis thus require a dual activity complex, containing SH3BP1 and CapZ, that is recruited to sites of active membrane remodeling to guide Cdc42 signaling and cytoskeletal dynamics.


Assuntos
Adesão Celular/fisiologia , Células Epiteliais/citologia , Proteínas Ativadoras de GTPase/fisiologia , Junções Intercelulares/fisiologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas de Capeamento de Actina/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células CACO-2 , Proteínas do Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Feminino , Proteínas Ativadoras de GTPase/biossíntese , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Junções Intercelulares/metabolismo , Complexos Multiproteicos/fisiologia , RNA Interferente Pequeno/genética , Transdução de Sinais/fisiologia
10.
Nat Cell Biol ; 13(2): 159-66, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21258369

RESUMO

Signalling by the GTPase RhoA, a key regulator of epithelial cell behaviour, can stimulate opposing processes: RhoA can promote junction formation and apical constriction, and reduce adhesion and cell spreading. Molecular mechanisms are thus required that ensure spatially restricted and process-specific RhoA activation. For many fundamental processes, including assembly of the epithelial junctional complex, such mechanisms are still unknown. Here we show that p114RhoGEF is a junction-associated protein that drives RhoA signalling at the junctional complex and regulates tight-junction assembly and epithelial morphogenesis. p114RhoGEF is required for RhoA activation at cell-cell junctions, and its depletion stimulates non-junctional Rho signalling and induction of myosin phosphorylation along the basal domain. Depletion of GEF-H1, a RhoA activator inhibited by junctional recruitment, does not reduce junction-associated RhoA activation. p114RhoGEF associates with a complex containing myosin II, Rock II and the junctional adaptor cingulin, indicating that p114RhoGEF is a component of a junction-associated Rho signalling module that drives spatially restricted activation of RhoA to regulate junction formation and epithelial morphogenesis.


Assuntos
Células Epiteliais/citologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Transdução de Sinais/fisiologia , Junções Íntimas/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo , Transferência Ressonante de Energia de Fluorescência , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho , Proteína rhoA de Ligação ao GTP/genética
11.
PLoS One ; 4(10): e7532, 2009 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-19855834

RESUMO

BACKGROUND: The African trypanosome Trypanosoma brucei is covered with a dense layer of Variant Surface Glycoprotein (VSG), which protects it from lysis by host complement via the alternative pathway in the mammalian bloodstream. Blocking VSG synthesis by the induction of VSG RNAi triggers an unusually precise precytokinesis cell-cycle arrest. METHODOLOGY/PRINCIPAL FINDINGS: Here, we characterise the cells arrested after the induction of VSG RNAi. We were able to rescue the VSG221 RNAi induced cell-cycle arrest through expression of a second different VSG (VSG117 which is not recognised by the VSG221 RNAi) from the VSG221 expression site. Metabolic labeling of the arrested cells showed that blocking VSG synthesis triggered a global translation arrest, with total protein synthesis reduced to less than 1-4% normal levels within 24 hours of induction of VSG RNAi. Analysis by electron microscopy showed that the translation arrest was coupled with rapid disassociation of ribosomes from the endoplasmic reticulum. Polysome analysis showed a drastic decrease in polysomes in the arrested cells. No major changes were found in levels of transcription, total RNA transcript levels or global amino acid concentrations in the arrested cells. CONCLUSIONS: The cell-cycle arrest phenotype triggered by the induction of VSG221 RNAi is not caused by siRNA toxicity, as this arrest can be alleviated if a second different VSG is inserted downstream of the active VSG221 expression site promoter. Analysis of polysomes in the stalled cells showed that the translation arrest is mediated at the level of translation initiation rather than elongation. The cell-cycle arrest induced in the presence of a VSG synthesis block is reversible, suggesting that VSG synthesis and/or trafficking to the cell surface could be monitored during the cell-cycle as part of a specific cell-cycle checkpoint.


Assuntos
Biossíntese de Proteínas , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superfície de Trypanosoma/química , Aminoácidos/química , Animais , Ciclo Celular , Retículo Endoplasmático/metabolismo , Variação Genética , Glicoproteínas/química , Ácidos Nucleicos/química , Fenótipo , Polirribossomos/química , Polirribossomos/metabolismo , Interferência de RNA , Transcrição Gênica , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/parasitologia , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo
12.
EMBO J ; 26(9): 2400-10, 2007 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-17431399

RESUMO

African trypanosomes show monoallelic expression of one of about 20 telomeric variant surface glycoprotein (VSG) gene-expression sites (ESs) while multiplying in the mammalian bloodstream. We screened for genes involved in ES silencing using flow cytometry and RNA interference (RNAi). We show that a novel member of the ISWI family of SWI2/SNF2-related chromatin-remodelling proteins (TbISWI) is involved in ES downregulation in Trypanosoma brucei. TbISWI has an atypical protein architecture for an ISWI, as it lacks characteristic SANT domains. Depletion of TbISWI by RNAi leads to 30-60-fold derepression of ESs in bloodstream-form T. brucei, and 10-17-fold derepression in insect form T. brucei. We show that although blocking synthesis of TbISWI leads to derepression of silent VSG ES promoters, this does not lead to fully processive transcription of silent ESs, or an increase in ES-activation rates. VSG ES activation in African trypanosomes therefore appears to be a multistep process, whereby an increase in transcription from a silent ES promoter is necessary but not sufficient for full ES activation.


Assuntos
Adenosina Trifosfatases/fisiologia , Fatores de Transcrição/fisiologia , Trypanosoma brucei brucei/fisiologia , Glicoproteínas Variantes de Superfície de Trypanosoma/fisiologia , Alelos , Sequência de Aminoácidos , Animais , Núcleo Celular/metabolismo , Regulação para Baixo , Inativação Gênica , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Interferência de RNA , Trypanosoma brucei brucei/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/biossíntese , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
13.
Vaccine ; 24(24): 5133-9, 2006 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-16707196

RESUMO

Previous studies show that vaccination with the recombinant Streptococcus pneumoniae lipoproteins PiuA and PiaA protects mice against systemic S. pneumoniae disease. The aim of this study was to assess the level of conservation of PiaA and PiuA and a third iron uptake ABC transporter lipoprotein, PitA, between common S. pneumoniae capsular serotypes by sequencing the corresponding genes, and to investigate whether these antigens can protect against respiratory infection. The nucleotide sequences of piuA and piaA were highly conserved in all strains, whereas pitA had significant variation in its nucleotide sequence making PitA an unattractive vaccine candidate. Mucosal vaccination of mice with PiuA and PiaA elicited specific antibody responses in serum and respiratory secretions, and protected against intranasal challenge with S. pneumoniae. These results provide further data indicating that PiuA and PiaA would be suitable candidates for a S. pneumoniae protein antigen vaccine.


Assuntos
Transportadores de Cassetes de Ligação de ATP/imunologia , Lipoproteínas/imunologia , Vacinas Pneumocócicas/imunologia , Pneumonia Pneumocócica/prevenção & controle , Sequência de Aminoácidos , Animais , Sequência Conservada , Feminino , Imunização , Interferon gama/biossíntese , Interleucina-5/biossíntese , Camundongos , Camundongos Endogâmicos CBA , Dados de Sequência Molecular
14.
Phys Rev Lett ; 92(11): 115001, 2004 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-15089143

RESUMO

Experimental evidence for a positive correlation is established between the magnitude of electromagnetic fluctuations up to the lower-hybrid frequency range and enhancement of reconnection rates in a well-controlled laboratory plasma. The fluctuations belong to the right-hand polarized whistler wave branch, propagating obliquely to the reconnecting magnetic field, with a phase velocity comparable to the relative drift velocity between electrons and ions. The measured short coherence lengths indicate their strongly nonlinear nature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...