Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mar Life Sci Technol ; 6(1): 68-83, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38433967

RESUMO

Mesopelagic fish (meso-fish) are central species within the Southern Ocean (SO). However, their ecosystem role and adaptive capacity to climate change are rarely integrated into protected areas assessments. This is a pity given their importance as crucial prey and predators in food webs, coupled with the impacts of climate change. Here, we estimate the habitat distribution of nine meso-fish using an ensemble model approach (MAXENT, random forest, and boosted regression tree). Four climate model simulations were used to project their distribution under two representative concentration pathways (RCP4.5 and RCP8.5) for short-term (2006-2055) and long-term (2050-2099) periods. In addition, we assess the ecological representativeness of protected areas under climate change scenarios using meso-fish as indicator species. Our models show that all species shift poleward in the future. Lanternfishes (family Myctophidae) are predicted to migrate poleward more than other families (Paralepididae, Nototheniidae, Bathylagidae, and Gonostomatidae). In comparison, lanternfishes were projected to increase habitat area in the eastern SO but lose area in the western SO; the opposite was projected for species in other families. Important areas (IAs) of meso-fish are mainly distributed near the Antarctic Peninsula and East Antarctica. Negotiated protected area cover 23% of IAs at present and 38% of IAs in the future (RCP8.5, long-term future). Many IAs of meso-fish still need to be included in protected areas, such as the Prydz Bay and the seas around the Antarctic Peninsula. Our results provide a framework for evaluating protected areas incorporating climate change adaptation strategies for protected areas management. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00188-9.

3.
Data Brief ; 46: 108790, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36569537

RESUMO

The German Bight (North Sea) is a centre of development of offshore wind energy. In the near future, windfarms will cover a significant part (about 25%) of the German Exclusive Economic Zone. In order to understand and assess potential effects of the construction and early operational phase of offshore wind turbines on the marine environment, an extensive research programme was carried out at Germany's first offshore windfarm alpha ventus. Here, data are presented on macroinfauna and local sediment characteristics collected as part of this programme. Grab samples were taken annually in autumn in 2008 (baseline), 2009 (construction phase) and 2010 and 2011 (early operational phase). Sampling stations were located along transects between adjacent turbines inside the windfarm and in two reference areas with similar environmental conditions in terms of sediment characteristics and water depth. A total of 336 samples were taken inside the windfarm and 192 samples in the reference areas. Sediment characteristics were described in terms of grain size distribution and organic content. The infauna was taxonomically analysed and quantified in terms of abundance and biomass. One-hundred three infauna taxa were identified, mainly belonging to the polychaetes, crustaceans and bivalves, living in fine to medium sandy soft bottom in water depths ranging from -27 m to -30 m. The data can be useful in meta-analyses of renewable energies impacts. Additionally, the data can support species distribution modelling to gain a better understanding of species' requirements and habitats as a basis for spatial planning scenarios and the evaluation of the ecological status of the marine environment. Moreover, the data can serve as baseline data for future monitoring and management of nearby protected areas where environmental conditions are comparable to those of the present study area.

4.
Sci Data ; 9(1): 483, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933490

RESUMO

Data on marine biota exist in many formats and sources, such as published literature, data repositories, and unpublished material. Due to this heterogeneity, information is difficult to find, access and combine, severely impeding its reuse for further scientific analysis and its long-term availability for future generations. To address this challenge, we present CRITTERBASE, a publicly accessible data warehouse and interactive portal that currently hosts quality-controlled and taxonomically standardized presence/absence, abundance, and biomass data for 18,644 samples and 3,664 benthic taxa (2,824 of which at species level). These samples were collected by grabs, underwater imaging or trawls in Arctic, North Sea and Antarctic regions between the years 1800 and 2014. Data were collated from literature, unpublished data, own research and online repositories. All metadata and links to primary sources are included. We envision CRITTERBASE becoming a valuable and continuously expanding tool for a wide range of usages, such as studies of spatio-temporal biodiversity patterns, impacts and risks of climate change or the evidence-based design of marine protection policies.


Assuntos
Biodiversidade , Biota , Data Warehousing , Regiões Árticas , Mudança Climática , Ecossistema , Oceanos e Mares
5.
Mar Environ Res ; 99: 125-35, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24816192

RESUMO

Artificial substrates are omnipresent today in most estuaries mostly in form of massive rip-rap used for groynes and jetties. In the Weser estuary, Germany, 60% of the shoreline is covered with such artificial substrates while, natural rocky substrate is lacking, as in all Wadden Sea estuaries. This large quantity of artificial substrates may be colonized by a benthic hard-substrate community which differs from the local natural soft-substrate assemblage. In this study we examined species compositions, abundances, biomass, and numbers of species of subtidal benthic communities on groynes and in the natural habitat, the sediment, along the salinity gradient of the Weser estuary. Species composition changed on both substrates significantly with salinity and was also significantly different between the substrates. In a comparison with the sediment, the groynes did not provide any benefit for non-indigenous nor for endangered species in terms of abundance, biomass, and number of species, but represent habitats with higher total abundances and biomass; though some non-indigenous species even occurred exclusively on groynes. In particular, groynes supported filter-feeding organisms which play an important role by linking benthic and pelagic food webs. The dominance of the suspension feeders affects crucial estuarine ecosystem services and may have important implications for the estuarine management by altering the estuarine ecological quality status. Hence, artificial substrates should be considered in future conservation planning and in ecological quality monitoring of the benthic fauna according to the European Water Framework Directive.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Ecossistema , Estuários , Cadeia Alimentar , Análise de Variância , Comportamento Alimentar/fisiologia , Sedimentos Geológicos , Alemanha , Salinidade , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...