Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Res Commun ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771448

RESUMO

Phenylbutazone (PBZ) is a widely used nonsteroidal anti-inflammatory drug for horses. However, because of its gastrointestinal side effects, its administration requires careful attention in veterinary practice. Malondialdehyde (MDA) is a serum biomarker associated with increased damage to the equine gastrointestinal system. This study investigated the hematological effects and alterations in the gastrointestinal tract and assessed serum MDA concentrations following repeated oral PBZ administration at clinical doses. Fourteen horses were randomly divided into control and treatment groups. All horses in the treatment group were administered 4.4 milligrams per kilogram of body weight of PBZ syrup orally twice a day for 7 days, whereas the control group received syrup as a placebo. The development of gastrointestinal side effects was investigated using gastroscopy, abdominal ultrasound, and fecal pH; serum MDA concentrations were assessed using a commercially available enzyme-linked immunosorbent assay kit. Data were compared between PBZ-treated and control horses before and after the treatment period. The treatment group exhibited decreased albumin and total protein concentrations. Moreover, this group exhibited a higher thickness of the right dorsal colon wall (p = 0.03) and had higher scores for squamous gastric ulcers (p = 0.01). Fecal pH was lower in the treatment group than in the control group after PBZ administration (p < 0.01). Although MDA concentrations were higher in the treatment group after PBZ administration, they did not differ significantly from those of the control group. This study highlighted the changes in hematological and gastrointestinal lesions resulting from PBZ administration in horses at clinical doses, even without clinical signs. However, MDA may not be an optimal biomarker for the early detection of gastrointestinal damage due to PBZ treatment in horses.

2.
Vet Sci ; 9(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35202347

RESUMO

Equine melanocytic neoplasm (EMN) is a common disease in older grey horses. The purpose of this study was to examine the potential proteins throughout EMN stages from faecal proteomic outlining using functional analysis. Faecal samples were collected from the rectum of 25 grey horses divided into three groups; normal group without EMN (n = 10), mild EMN (n = 6) and severe EMN (n = 9). Based on the results, 5910 annotated proteins out of 8509 total proteins were assessed from proteomic profiling. We observed differentially expressed proteins (DEPs) between the normal group and the EMN group, and 109 significant proteins were obtained, of which 28 and 81 were involved in metabolic and non-metabolic functions, respectively. We found 10 proteins that play a key role in lipid metabolism, affecting the tumour microenvironment and, consequently, melanoma progression. Interestingly, FOSL1 (FOS like 1, AP-1 transcription factor subunit) was considered as a potential highly expressed protein in a mild EMN group involved in melanocytes cell and related melanoma. Diacylglycerol kinase (DGKB), TGc domain-containing protein (Tgm2), structural maintenance of chromosomes 4 (SMC4) and mastermind-like transcriptional coactivator 2 (MAML2) were related to lipid metabolism, facilitating melanoma development in the severe-EMN group. In conclusion, these potential proteins can be used as candidate biomarkers for the monitoring of early EMN, the development of EMN, further prevention and treatment.

3.
Animals (Basel) ; 11(7)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199079

RESUMO

Equine melanocytic neoplasm (EMN) is a cutaneous neoplasm and is mostly observed in aged grey horses. This preliminary study aimed to identify potential proteins to differentiate normal, mild and severe EMN from serum proteomic profiling. Serum samples were collected from 25 grey horses assigned to three groups: normal (free of EMN; n = 10), mild (n = 6) and severe EMN (n = 9). To explore the differences in proteins between groups, proteomic profiling and analysis were employed. Accordingly, 8241 annotated proteins out of 8725 total proteins were compared between normal and EMN groups and inspected based on differentially expressed proteins (DEPs). Through DEP analysis, 95 significant DEPs differed between normal and EMN groups. Among these DEPs, 41 significant proteins were categorised according to protein functions. Based on 41 significant proteins, 10 were involved in metabolism and 31 in non-metabolism. Interestingly, phospholipid phosphatase6 (PLPP6) and ATPase subunit alpha (Na+/K+-ATPase) were considered as potential proteins uniquely expressed in mild EMN and related to lipid and energy metabolism, respectively. Non-metabolism-related proteins (BRCA1, phosphorylase B kinase regulatory subunit: PHKA1, tyrosine-protein kinase receptor: ALK and rho-associated protein kinase: ROCK1) correlated to melanoma development differed among all groups. The results of our study provide a foundation for early EMN biomonitoring and prevention.

4.
J Vet Med Sci ; 81(3): 418-424, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30674748

RESUMO

Equine Glandular Gastric Disease (EGGD) is a common disease in sport horses. This disease might be associated with usage of nonsteroidal anti-inflammatory drugs (NSAIDs) for treating inflammatory diseases. Although gastroscopy has been an effective method for diagnosis, but a less invasive, and inexpensive method is preferred. This study used proteomic technology to identify candidate serum proteins that might be used as markers of NSAIDs induced EGGD. Five Thoroughbred horses were given high doses of NSAID, phenylbutazone to treat lameness. The experiment was divided into three periods: (i) Pre-EGGD period, (ii) during EGGD period, and (iii) Post-EGGD period. Gastroscopy were used to diagnose EGGD, serum was collected to perform gel electrophoresis (1D SDS-PAGE) and mass spectrometry (LC-MS) in order to identify serum proteins in each group. The candidate serum proteins were computationally predicted for the interaction between phenylbutazone and proteins, tissue specific expression, and association to gastric ulceration. After EGGD induction, all horses showed clinical signs of colic with marked congestion and erosion appearing in the mucosa of the glandular stomach whereas no change was observed in the mucosa of non-glandular stomach. Our proteomic results identified 14 proteins that might be used as EGGD markers. These proteins were highly expressed in the glandular stomach and some proteins were associated with phenylbutazone or ulcer development. However, confirmation of these candidate marker proteins is required with specific antibodies in the larger horse population before they can be considered for application in the field.


Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Proteínas Sanguíneas/metabolismo , Doenças dos Cavalos/induzido quimicamente , Fenilbutazona/toxicidade , Gastropatias/induzido quimicamente , Animais , Proteínas Sanguíneas/genética , Cavalos , Masculino
5.
J Equine Sci ; 29(3): 53-60, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30250392

RESUMO

Silent gastric ulceration occurs without evidence of clinical signs and is common in horses. There is currently no a simple and effective method to diagnose this disease. Proteomics can be used to identify serum biomarkers, but the most abundant serum protein, albumin, could conceal candidate biomarkers. Therefore, it is recommended to remove albumin before a proteomic study; however, there is no specific albumin depletion kit or standard protocol available for horse samples. The objectives of this study were to optimise a protocol to remove equine serum albumin and to use albumin-depleted serum to identify the protein biomarkers for silent gastric ulceration. Gastroscopy was used to identify gastric ulceration, and serum was obtained from horses with either a healthy gastric mucosa or gastric ulceration. Serum albumin was removed using the trichloroacetic acid (TCA) protein precipitation method, and this protocol was optimised by varying the concentration of TCA, type of organic solvents, ratio of serum to protein precipitation solution, and incubation times. Electrophoresis and image analysis were used to compare the amounts of albumin, immunoglobulins G (IgG), and protein degradation before and after TCA precipitation. The best protocol was chosen to remove albumin for a proteomic study (electrophoresis and mass spectrometry). The results revealed that protocol 2 (ratio of serum to solution 1:5, 10% TCA in acetone, and 90 min incubation) was the most efficient protocol to remove albumin (98%) and IgG heavy (80%) and light (98%) chains without degrading other proteins. After electrophoresis and mass spectrometry analysis, KRT1, KRT6A and KRT18 were identified as potential markers for silent gastric ulceration.

6.
J Equine Sci ; 28(4): 135-141, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29270070

RESUMO

Gastric tissue biopsy and gene expression analysis are important tools for disease diagnosis and study of the physiology of the equine stomach. However, RNA extraction from gastric biopsy samples is a complex procedure because the samples contain low quantities of RNA and are contaminated with mucous protein and bacterial flora. The objectives of these studies were to compare the performance of RNA extraction methods and to investigate the sensitivity of commercial qPCR master mixes for gene expression analysis of gastric biopsy samples. Three commercial RNA extraction methods (TRIzol™, GENEzol™ and MiniPrep™) and four qPCR master mixes with SYBR® green (qPCRBIO, KAPA, QuantiNova, and PerfeCTa) were compared. RNA qualification and quantitation were compared. Real-time PCR was used to compare qPCR master mixes. The results revealed that TRIzol and GENEzol obtained significantly higher yield of RNA (P<0.01) but that TRIzol had the highest contamination of protein and DNA (P<0.05). Conversely, MiniPrep resulting in a significantly higher purification of RNA (P<0.05) but provided the lowest yield of RNA (P<0.01). For PCR master mixes, KAPA was significantly (P<0.05) more sensitive than other qPCR kits for all amounts of DNA template, particularly at the lowest amount of cDNA. In conclusion, GENEzol is the best method to obtain a high RNA yield and purification and it is more cost-effective than the others as well. Regarding the qPCR master mixes, KAPA SYBR qPCR Master Mix (2x) Universal is superior to the other tested master mixes for studying gene expression in equine gastric biopsies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...