Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928029

RESUMO

Metabolic engineering enables oilseed crops to be more competitive by having more attractive properties for oleochemical industrial applications. The aim of this study was to increase the erucic acid level and to produce wax ester (WE) in seed oil by genetic transformation to enhance the industrial applications of B. carinata. Six transgenic lines for high erucic acid and fifteen transgenic lines for wax esters were obtained. The integration of the target genes for high erucic acid (BnFAE1 and LdPLAAT) and for WEs (ScWS and ScFAR) in the genome of B. carinata cv. 'Derash' was confirmed by PCR analysis. The qRT-PCR results showed overexpression of BnFAE1 and LdPLAAT and downregulation of RNAi-BcFAD2 in the seeds of the transgenic lines. The fatty acid profile and WE content and profile in the seed oil of the transgenic lines and wild type grown in biotron were analyzed using gas chromatography and nanoelectrospray coupled with tandem mass spectrometry. A significant increase in erucic acid was observed in some transgenic lines ranging from 19% to 29% in relation to the wild type, with a level of erucic acid reaching up to 52.7%. Likewise, the transgenic lines harboring ScFAR and ScWS genes produced up to 25% WE content, and the most abundant WE species were 22:1/20:1 and 22:1/22:1. This study demonstrated that metabolic engineering is an effective biotechnological approach for developing B. carinata into an industrial crop.


Assuntos
Brassica , Ácidos Erúcicos , Ésteres , Engenharia Metabólica , Plantas Geneticamente Modificadas , Sementes , Ceras , Ácidos Erúcicos/metabolismo , Engenharia Metabólica/métodos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Ceras/metabolismo , Ésteres/metabolismo , Sementes/genética , Sementes/metabolismo , Brassica/genética , Brassica/metabolismo , Ácidos Graxos/metabolismo , Óleos de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Genes (Basel) ; 14(9)2023 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-37761897

RESUMO

Ethiopian mustard (Brassica carinata A. Braun) is currently one of the potential oilseeds dedicated to the production for biofuel and other bio-industrial applications. The crop is assumed to be native to Ethiopia where a number of diversified B. carinata germplasms are found and conserved ex situ. However, there is very limited information on the genetic diversity and population structure of the species. This study aimed to investigate the genetic diversity and population structure of B. carinata genotypes of different origins using high-throughput single nucleotide polymorphism (SNP) markers. We used Brassica 90K Illumina InfiniumTM SNP array for genotyping 90 B. carinata genotypes, and a total of 11,499 informative SNP markers were used for investigating the population structure and genetic diversity. The structure analysis, principal coordinate analysis (PcoA) and neighbor-joining tree analysis clustered the 90 B. carinata genotypes into two distinct subpopulations (Pop1 and Pop2). The majority of accessions (65%) were clustered in Pop1, mainly obtained from Oromia and South West Ethiopian People (SWEP) regions. Pop2 constituted dominantly of breeding lines and varieties, implying target selection contributed to the formation of distinct populations. Analysis of molecular variance (AMOVA) revealed a higher genetic variation (93%) within populations than between populations (7%), with low genetic differentiation (PhiPT = 0.07) and poor correlation between genetic and geographical distance (R = 0.02). This implies the presence of gene flow (Nm > 1) and weak geographical structure of accessions. Genetic diversity indices showed the presence of moderate genetic diversity in B. carinata populations with an average genetic diversity value (HE = 0.31) and polymorphism information content (PIC = 0.26). The findings of this study provide important and relevant information for future breeding and conservation efforts of B. carinata.


Assuntos
Variação Genética , Polimorfismo de Nucleotídeo Único , Humanos , Polimorfismo de Nucleotídeo Único/genética , Variação Genética/genética , Mostardeira/genética , Melhoramento Vegetal , Genótipo
3.
Evol Appl ; 8(5): 464-75, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26029260

RESUMO

Noug (Guizotia abyssinica) is a semidomesticated oil-seed crop, which is primarily cultivated in Ethiopia. Unlike its closest crop relative, sunflower, noug has small seeds, small flowering heads, many branches, many flowering heads, and indeterminate flowering, and it shatters in the field. Here, we conducted common garden studies and microsatellite analyses of genetic variation to test whether high levels of crop-wild gene flow and/or unfavorable phenotypic correlations have hindered noug domestication. With the exception of one population, analyses of microsatellite variation failed to detect substantial recent admixture between noug and its wild progenitor. Likewise, only very weak correlations were found between seed mass and the number or size of flowering heads. Thus, noug's 'atypical' domestication syndrome does not seem to be a consequence of recent introgression or unfavorable phenotypic correlations. Nonetheless, our data do reveal evidence of local adaptation of noug cultivars to different precipitation regimes, as well as high levels of phenotypic plasticity, which may permit reasonable yields under diverse environmental conditions. Why noug has not been fully domesticated remains a mystery, but perhaps early farmers selected for resilience to episodic drought or untended environments rather than larger seeds. Domestication may also have been slowed by noug's outcrossing mating system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...