Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 17(6): e3000334, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31206517

RESUMO

Escherichia coli represents a classical intestinal gram-negative commensal. Despite this commensalism, different E. coli strains can mediate disparate immunogenic properties in a given host. Symbiotic E. coli strains such as E. coli Nissle 1917 (EcN) are attributed beneficial properties, e.g., promotion of intestinal homeostasis. Therefore, we aimed to identify molecular features derived from symbiotic bacteria that might help to develop innovative therapeutic alternatives for the treatment of intestinal immune disorders. This study was performed using the dextran sodium sulphate (DSS)-induced colitis mouse model, which is routinely used to evaluate potential therapeutics for the treatment of Inflammatory Bowel Diseases (IBDs). We focused on the analysis of flagellin structures of different E. coli strains. EcN flagellin was found to harbor a substantially longer hypervariable region (HVR) compared to other commensal E. coli strains, and this longer HVR mediated symbiotic properties through stronger activation of Toll-like receptor (TLR)5, thereby resulting in interleukin (IL)-22-mediated protection of mice against DSS-induced colitis. Furthermore, using bone-marrow-chimeric mice (BMCM), CD11c+ cells of the colonic lamina propria (LP) were identified as the main mediators of these flagellin-induced symbiotic effects. We propose flagellin from symbiotic E. coli strains as a potential therapeutic to restore intestinal immune homeostasis, e.g., for the treatment of IBD patients.


Assuntos
Escherichia coli/metabolismo , Flagelina/genética , Simbiose/genética , Animais , Colite/induzido quimicamente , Colite/imunologia , Modelos Animais de Doenças , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Feminino , Flagelina/metabolismo , Mucosa Intestinal , Intestinos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia , Simbiose/fisiologia , Receptor 5 Toll-Like/metabolismo
2.
PLoS Pathog ; 12(12): e1006071, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27977800

RESUMO

Bacterial type III protein secretion systems inject effector proteins into eukaryotic host cells in order to promote survival and colonization of Gram-negative pathogens and symbionts. Secretion across the bacterial cell envelope and injection into host cells is facilitated by a so-called injectisome. Its small hydrophobic export apparatus components SpaP and SpaR were shown to nucleate assembly of the needle complex and to form the central "cup" substructure of a Salmonella Typhimurium secretion system. However, the in vivo placement of these components in the needle complex and their function during the secretion process remained poorly defined. Here we present evidence that a SpaP pentamer forms a 15 Å wide pore and provide a detailed map of SpaP interactions with the export apparatus components SpaQ, SpaR, and SpaS. We further refine the current view of export apparatus assembly, consolidate transmembrane topology models for SpaP and SpaR, and present intimate interactions of the periplasmic domains of SpaP and SpaR with the inner rod protein PrgJ, indicating how export apparatus and needle filament are connected to create a continuous conduit for substrate translocation.


Assuntos
Salmonella typhimurium/metabolismo , Salmonella typhimurium/ultraestrutura , Sistemas de Secreção Tipo III/metabolismo , Sistemas de Secreção Tipo III/ultraestrutura , Cromatografia em Gel , Processamento de Imagem Assistida por Computador , Immunoblotting , Espectrometria de Massas , Microscopia Eletrônica
3.
Nucleic Acids Res ; 42(6): 3908-18, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24423871

RESUMO

In this study, we examined the intracellular whereabouts of Mrr, a cryptic type IV restriction endonuclease of Escherichia coli K12, in response to different conditions. In absence of stimuli triggering its activity, Mrr was found to be strongly associated with the nucleoid as a number of discrete foci, suggesting the presence of Mrr hotspots on the chromosome. Previously established elicitors of Mrr activity, such as exposure to high (hydrostatic) pressure (HP) or expression of the HhaII methyltransferase, both caused nucleoid condensation and an unexpected coalescence of Mrr foci. However, although the resulting Mrr/nucleoid complex was stable when triggered with HhaII, it tended to be only short-lived when elicited with HP. Moreover, HP-mediated activation of Mrr typically led to cellular blebbing, suggesting a link between chromosome and cellular integrity. Interestingly, Mrr variants could be isolated that were specifically compromised in either HhaII- or HP-dependent activation, underscoring a mechanistic difference in the way both triggers activate Mrr. In general, our results reveal that Mrr can take part in complex spatial distributions on the nucleoid and can be engaged in distinct modes of activity.


Assuntos
Enzimas de Restrição do DNA/análise , Enzimas de Restrição do DNA/metabolismo , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/metabolismo , Enzimas de Restrição do DNA/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo III , Proteínas de Escherichia coli/genética , Pressão Hidrostática , Mutação
4.
Nucleic Acids Res ; 39(14): 5991-6001, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21504983

RESUMO

The Mrr protein of Escherichia coli is a laterally acquired Type IV restriction endonuclease with specificity for methylated DNA. While Mrr nuclease activity can be elicited by high-pressure stress in E. coli MG1655, its (over)expression per se does not confer any obvious toxicity. In this study, however, we discovered that Mrr of E. coli MG1655 causes distinct genotoxicity when expressed in Salmonella typhimurium LT2. Genetic screening enabled us to contribute this toxicity entirely to the presence of the endogenous Type III restriction modification system (StyLTI) of S. typhimurium LT2. The StyLTI system consists of the Mod DNA methyltransferase and the Res restriction endonuclease, and we revealed that expression of the LT2 mod gene was sufficient to trigger Mrr activity in E. coli MG1655. Moreover, we could demonstrate that horizontal acquisition of the MG1655 mrr locus can drive the loss of endogenous Mod functionality present in S. typhimurium LT2 and E. coli ED1a, and observed a strong anti-correlation between close homologues of MG1655 mrr and LT2 mod in the genome database. This apparent evolutionary antagonism is further discussed in the light of a possible role for Mrr as defense mechanism against the establishment of epigenetic regulation by foreign DNA methyltransferases.


Assuntos
Enzimas de Restrição do DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo III/metabolismo , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Metilases de Modificação do DNA/metabolismo , Enzimas de Restrição do DNA/genética , Desoxirribonucleases de Sítio Específico do Tipo III/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Salmonella typhimurium/enzimologia , Salmonella typhimurium/metabolismo
5.
Biochem Biophys Res Commun ; 367(2): 435-9, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18178154

RESUMO

The Mrr protein of Escherichia coli K12 is a cryptic type IV restriction endonuclease with specificity for methylated DNA. Recently it was discovered that endogenous activation of E. coli Mrr could be triggered by high pressure stress, resulting in the generation of double strand breaks in the host chromosome and concomitant induction of the SOS response. In this report we focused on Mrr activity of Salmonella Typhimurium LT2, and although we surprisingly found no evidence of high pressure induced activation, a large number of constitutively activated Mrr mutants could be isolated when the mrr gene was routinely cloned in an expression vector. Analysis of several spontaneous mutants revealed different single mutations that rendered the Mrr protein constitutively active. Moreover, a spontaneous S. Typhimurium mutant could be isolated that displayed an increased basal SOS induction because of a point mutation in the chromosomal mrr gene. Based on these findings the physiological role of Mrr in the cell is discussed.


Assuntos
Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Resposta SOS em Genética/fisiologia , Salmonella typhimurium/enzimologia , Ativação Enzimática , Estabilidade Enzimática , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...