Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microbiol Biol Educ ; 25(1): e0016323, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661404

RESUMO

The experience of transferring to a 4-year college, especially in STEM programs, can be particularly challenging for students. While much of the onus for preparing students for transfer has been placed on community colleges, the 4-year institutions to which students transfer have critical roles to play. With this in mind, we established the Pre-transfer Interventions, Mentoring, and Experience in Research (PRIMER) program to support students transferring into the biology department at our university. The design of this program is based around the key elements of Schlossberg's Transition Theory, focusing on the support and strategies elements of the theory. Through a weekly academic skill course, peer mentoring, and informal academic and social supports, our goals were for students to increase their involvement in the campus community and to increase their use of academic support resources. We used qualitative and quantitative assessments to compare sense of community and use of campus resources between students who participated in our program and others. We found that students in our program strongly increased their sense of community during the semester compared to other students and used campus resources at a higher rate. Our insights from the PRIMER program can help others in developing programs to support transfer students in biology departments.

2.
J Microbiol Biol Educ ; 24(3)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38107991

RESUMO

Community colleges are frequently an affordable, accessible entrance to a Science, Technology, Engineering, and Mathematics (STEM) education and career, but the transition from a 2-year program to a 4-year institution can be tumultuous. In this mixed-methods study, we explore the experiences of transfer and prospective transfer students. Through surveys and interviews, we identify the challenges faced by and the supports desired by biology transfer students. We describe how community college students perceive their introductory biology courses, and we compare the biology identity and self-efficacy of these students to peers at a 4-year institution. Students expressed uncertainty about what to expect from the transfer experience, and they benefitted from interventions that made the university experience more concrete or clarified their expectations. We found that community college students are just as interested in biology as peers at a 4-year university, but they are significantly less likely to believe that others recognize them as "biology people" and report less self-efficacy regarding biology courses. Students felt particularly well-prepared for transfer after community college biology courses they described as "rigorous" and "demanding," especially because students expressed that the community college environment helped support them through the challenges of higher education.

3.
J Microbiol Biol Educ ; 24(2)2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37614875

RESUMO

Argumentation is vital in the development of scientific knowledge, and students who can argue from evidence and support their claims develop a deeper understanding of science. In this study, the Argument-Driven Inquiry instruction model was implemented in a two-semester sequence of introductory biology laboratories. Student's scientific argumentation sessions were video recorded and analyzed using the Assessment of Scientific Argumentation in the Classroom observation protocol. This protocol separates argumentation into three subcategories: cognitive (how the group develops understanding), epistemic (how consistent the group's process is with the culture of science), and social (how the group members interact with each other). We asked whether students are equally skilled in all subcategories of argumentation and how students' argumentation skills differ based on lab exercise and course. Students scored significantly higher on the social than the cognitive and epistemic subcategories of argumentation. Total argumentation scores were significantly different between the two focal investigations in Biology Laboratory I but not between the two focal investigations in Biology Laboratory II. Therefore, student argumentation skills were not consistent across content; the design of the lab exercises and their implementation impacted the level of argumentation that occurred. These results will ultimately aid in the development and expansion of Argument-Driven Inquiry instructional models, with the goal of further enhancing students' scientific argumentation skills and understanding of science.

4.
Tree Physiol ; 40(2): 142-157, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31860720

RESUMO

A critical process that allows multiple, similar species to coexist in an ecological community is their ability to partition local habitat gradients. The mechanisms that underlie this separation at local scales may include niche differences associated with their biogeographic history, differences in ecological function associated with the degree of shared ancestry and trait-based performance differences, which may be related to spatial or temporal variation in habitat. In this study we measured traits related to water-use, growth and stress tolerance in mature trees and seedlings of three oak species (Quercus alba L., Quercus falcata Michx. and Quercus palustris Münchh). which co-occur in temperate forests across the eastern USA but tend to be found in contrasting hydrologic environments. The three species showed significant differences in their local distributions along a hydrologic gradient. We tested three possible mechanisms that influence their contrasting local environmental distributions and promote their long-term co-existence: (i) differences in their climatic distributions across a broad geographic range, (ii) differences in functional traits related to water use, drought tolerance and growth and (iii) contrasting responses to temporal variation in water availability. We identified key differences between the species in both their range-wide climatic distributions (especially aridity index and mean annual temperature) and physiological traits in mature trees and seedlings, including daily water loss, hydraulic conductance, stress responses, growth rate and biomass allocation. Taken together, these differences explain the habitat partitioning that allows three closely related species to co-occur locally.


Assuntos
Quercus , Secas , Ecossistema , Hidrologia , Árvores
5.
Plant Cell Environ ; 37(4): 899-910, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24118010

RESUMO

The movement of water from moist to dry soil layers through the root systems of plants, referred to as hydraulic redistribution (HR), occurs throughout the world and is thought to influence carbon and water budgets and ecosystem functioning. The realized hydrologic, biogeochemical and ecological consequences of HR depend on the amount of redistributed water, whereas the ability to assess these impacts requires models that correctly capture HR magnitude and timing. Using several soil types and two ecotypes of sunflower (Helianthus annuus L.) in split-pot experiments, we examined how well the widely used HR modelling formulation developed by Ryel et al. matched experimental determination of HR across a range of water potential driving gradients. H. annuus carries out extensive night-time transpiration, and although over the last decade it has become more widely recognized that night-time transpiration occurs in multiple species and many ecosystems, the original Ryel et al. formulation does not include the effect of night-time transpiration on HR. We developed and added a representation of night-time transpiration into the formulation, and only then was the model able to capture the dynamics and magnitude of HR we observed as soils dried and night-time stomatal behaviour changed, both influencing HR.


Assuntos
Escuridão , Helianthus/fisiologia , Modelos Biológicos , Transpiração Vegetal/fisiologia , Água/metabolismo , Biomassa , Helianthus/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...