Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Phys Med Biol ; 68(11)2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37137315

RESUMO

Purpose.Present and validate an analytical model (AM) to calculate efficiency and spatial resolution of multi-parallel slit (MPS) and knife-edge slit (KES) cameras in the context of prompt gamma (PG) imaging in proton therapy, as well as perform a fair comparison between two prototypes of these cameras with their design specifications.Materials and methods.Monte Carlo (MC) simulations with perfect (ideal) conditions were performed to validate the proposed AM, as well as simulations in realistic conditions for the comparison of both prototypes. The spatial resolution obtained from simulations was derived from reconstructed PG profiles. The falloff retrieval precision (FRP) was quantified based on the variability of PG profiles from 50 different realizations.Results.The AM shows that KES and MPS designs fulfilling 'MPS-KES similar conditions' should have very close actual performances if the KES slit width corresponds to the half of the MPS slit width. Reconstructed PG profiles from simulated data with both cameras were used to compute the efficiency and spatial resolutions to compare against the model predictions. The FRP of both cameras was calculated with realistic detection conditions for beams with 107, 108and 109incident protons. A good agreement was found between the values predicted by the AM and those obtained from MC simulations (relative deviations of the order of 5%).Conclusion.The MPS camera outperforms the KES camera with their design specifications in realistic conditions and both systems can reach millimetric precision in the determination of the falloff position with 108or more initial protons.


Assuntos
Câmaras gama , Terapia com Prótons , Prótons , Método de Monte Carlo , Terapia com Prótons/métodos , Diagnóstico por Imagem , Raios gama , Imagens de Fantasmas
3.
Phys Med Biol ; 65(24): 245033, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-32101808

RESUMO

In order to fully exploit the ballistic potential of particle therapy, we propose an online range monitoring concept based on time-of-flight (TOF)-resolved prompt gamma (PG) detection in a single proton counting regime. In a proof of principle experiment, different types of monolithic scintillating gamma detectors are read in time coincidence with a diamond-based beam hodoscope, in order to build TOF spectra of PG generated in a target presenting an air cavity of variable thickness. Since the measurement was carried out at low beam currents (< 1 proton/bunch) it was possible to reach excellent coincidence time resolutions, of the order of 100 ps (σ). Our goal is to detect possible deviations of the proton range with respect to treatment planning within a few intense irradiation spots at the beginning of the session and then carry on the treatment at standard beam currents. The measurements were limited to 10 mm proton range shift. A Monte Carlo simulation study reproducing the experiment has shown that a 3 mm shift can be detected at 2σ by a single detector of ∼1.4 × 10-3 absolute detection efficiency within a single irradiation spot (∼108 protons) and an optimised experimental set-up.


Assuntos
Terapia com Prótons/métodos , Raios gama , Humanos , Método de Monte Carlo , Imagens de Fantasmas
4.
Phys Med ; 69: 147-163, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31918367

RESUMO

PURPOSE: Targeted radiation therapy has seen an increased interest in the past decade. In vitro and in vivo experiments showed enhanced radiation doses due to gold nanoparticles (GNPs) to tumors in mice and demonstrated a high potential for clinical application. However, finding a functionalized molecular formulation for actively targeting GNPs in tumor cells is challenging. Furthermore, the enhanced energy deposition by secondary electrons around GNPs, particularly by short-ranged Auger electrons is difficult to measure. Computational models, such as Monte Carlo (MC) radiation transport codes, have been used to estimate the physical quantities and effects of GNPs. However, as these codes differ from one to another, the reliability of physical and dosimetric quantities needs to be established at cellular and molecular levels, so that the subsequent biological effects can be assessed quantitatively. METHODS: In this work, irradiation of single GNPs of 50 nm and 100 nm diameter by X-ray spectra generated by 50 and 100 peak kilovoltages was simulated for a defined geometry setup, by applying multiple MC codes in the EURADOS framework. RESULTS: The mean dose enhancement ratio of the first 10 nm-thick water shell around a 100 nm GNP ranges from 400 for 100 kVp X-rays to 600 for 50 kVp X-rays with large uncertainty factors up to 2.3. CONCLUSIONS: It is concluded that the absolute dose enhancement effects have large uncertainties and need an inter-code intercomparison for a high quality assurance; relative properties may be a better measure until more experimental data is available to constrain the models.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Radioterapia/métodos , Animais , Simulação por Computador , Elétrons , Humanos , Imageamento Tridimensional , Técnicas In Vitro , Camundongos , Método de Monte Carlo , Neoplasias/diagnóstico por imagem , Controle de Qualidade , Radiometria , Reprodutibilidade dos Testes , Água , Raios X
5.
Phys Med Biol ; 65(5): 055004, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31869822

RESUMO

Compton cameras are gamma-ray imaging systems which have been proposed for a wide variety of applications such as medical imaging, nuclear decommissioning or homeland security. In the design and optimization of such a system Monte Carlo simulations play an essential role. In this work, we propose a generic module to perform Monte Carlo simulations and analyses of Compton Camera imaging which is included in the open-source GATE/Geant4 platform. Several digitization stages have been implemented within the module to mimic the performance of the most commonly employed detectors (e.g. monolithic blocks, pixelated scintillator crystals, strip detectors...). Time coincidence sorter and sequence coincidence reconstruction are also available in order to aim at providing modules to facilitate the comparison and reproduction of the data taken with different prototypes. All processing steps may be performed during the simulation (on-the-fly mode) or as a post-process of the output files (offline mode). The predictions of the module have been compared with experimental data in terms of energy spectra, angular resolution, efficiency and back-projection image reconstruction. Consistent results within a 3-sigma interval were obtained for the energy spectra except for low energies where small differences arise. The angular resolution measure for incident photons of 1275 keV was also in good agreement between both data sets with a value close to 13°. Moreover, with the aim of demonstrating the versatility of such a tool the performance of two different Compton camera designs was evaluated and compared.


Assuntos
Simulação por Computador , Câmaras gama , Radiografia/métodos , Método de Monte Carlo , Fótons , Radiografia/instrumentação
6.
Phys Med Biol ; 62(23): 8794-8812, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-28994664

RESUMO

Single photon emission computed tomography (SPECT) is at present one of the major techniques for non-invasive diagnostics in nuclear medicine. The clinical routine is mostly based on collimated cameras, originally proposed by Hal Anger. Due to the presence of mechanical collimation, detection efficiency and energy acceptance are limited and fixed by the system's geometrical features. In order to overcome these limitations, the application of Compton cameras for SPECT has been investigated for several years. In this study we compare a commercial SPECT-Anger device, the General Electric HealthCare Infinia system with a High Energy General Purpose (HEGP) collimator, and the Compton camera prototype under development by the French collaboration CLaRyS, through Monte Carlo simulations (GATE-GEANT4 Application for Tomographic Emission-version 7.1 and GEANT4 version 9.6, respectively). Given the possible introduction of new radio-emitters at higher energies intrinsically allowed by the Compton camera detection principle, the two detectors are exposed to point-like sources at increasing primary gamma energies, from actual isotopes already suggested for nuclear medicine applications. The Compton camera prototype is first characterized for SPECT application by studying the main parameters affecting its imaging performance: detector energy resolution and random coincidence rate. The two detector performances are then compared in terms of radial event distribution, detection efficiency and final image, obtained by gamma transmission analysis for the Anger system, and with an iterative List Mode-Maximum Likelihood Expectation Maximization (LM-MLEM) algorithm for the Compton reconstruction. The results show for the Compton camera a detection efficiency increased by a factor larger than an order of magnitude with respect to the Anger camera, associated with an enhanced spatial resolution for energies beyond 500 keV. We discuss the advantages of Compton camera application for SPECT if compared to present commercial Anger systems, with particular focus on dose delivered to the patient, examination time, and spatial uncertainties.


Assuntos
Câmaras gama , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Algoritmos , Benchmarking , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Fótons , Probabilidade
7.
Phys Med Biol ; 62(24): 9220-9239, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29058685

RESUMO

Ion beam therapy enables a highly accurate dose conformation delivery to the tumor due to the finite range of charged ions in matter (i.e. Bragg peak (BP)). Consequently, the dose profile is very sensitive to patients anatomical changes as well as minor mispositioning, and so it requires improved dose control techniques. Proton interaction vertex imaging (IVI) could offer an online range control in carbon ion therapy. In this paper, a statistical method was used to study the sensitivity of the IVI technique on experimental data obtained from the Heidelberg Ion-Beam Therapy Center. The vertices of secondary protons were reconstructed with pixelized silicon detectors. The statistical study used the [Formula: see text] test of the reconstructed vertex distributions for a given displacement of the BP position as a function of the impinging carbon ions. Different phantom configurations were used with or without bone equivalent tissue and air inserts. The inflection points in the fall-off region of the longitudinal vertex distribution were computed using different methods, while the relation with the BP position was established. In the present setup, the resolution of the BP position was about 4-5 mm in the homogeneous phantom under clinical conditions (106 incident carbon ions). Our results show that the IVI method could therefore monitor the BP position with a promising resolution in clinical conditions.


Assuntos
Radioterapia com Íons Pesados/métodos , Radioterapia Assistida por Computador/métodos , Humanos , Imagens de Fantasmas , Prótons , Dosagem Radioterapêutica
8.
Phys Med Biol ; 62(4): 1248-1268, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-27995904

RESUMO

Particle therapy is increasingly attractive for the treatment of tumors and the number of facilities offering it is rising worldwide. Due to the well-known enhanced effectiveness of ions, it is of utmost importance to plan treatments with great care to ensure tumor killing and healthy tissues sparing. Hence, the accurate quantification of the relative biological effectiveness (RBE) of ions, used in the calculation of the biological dose, is critical. Nevertheless, the RBE is a complex function of many parameters and its determination requires modeling. The approaches currently used have allowed particle therapy to thrive, but still show some shortcomings. We present herein a short description of a new theoretical framework, NanOx, to calculate cell survival in the context of particle therapy. It gathers principles from existing approaches, while addressing some of their weaknesses. NanOx is a multiscale model that takes the stochastic nature of radiation at nanometric and micrometric scales fully into account, integrating also the chemical aspects of radiation-matter interaction. The latter are included in the model by means of a chemical specific energy, determined from the production of reactive chemical species induced by irradiation. Such a production represents the accumulation of oxidative stress and sublethal damage in the cell, potentially generating non-local lethal events in NanOx. The complementary local lethal events occur in a very localized region and can, alone, lead to cell death. Both these classes of events contribute to cell death. The comparison between experimental data and model predictions for the V79 cell line show a good agreement. In particular, the dependence of the typical shoulders of cell survival curves on linear energy transfer are well described, but also the effectiveness of different ions, including the overkill effect. These results required the adjustment of a number of parameters compatible with the application of the model in a clinical scenario thereby showing the potential of NanOx. Said parameters are discussed in detail in this paper.


Assuntos
Sobrevivência Celular/efeitos da radiação , Partículas Elementares/uso terapêutico , Fibroblastos/efeitos da radiação , Pulmão/efeitos da radiação , Modelos Teóricos , Animais , Células Cultivadas , Cricetinae , Cricetulus , Fibroblastos/citologia , Transferência Linear de Energia , Pulmão/citologia , Eficiência Biológica Relativa
9.
Phys Med Biol ; 61(21): 7725-7743, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27740939

RESUMO

There is interest in the particle therapy community in using prompt gammas (PGs), a natural byproduct of particle treatment, for range verification and eventually dose control. However, PG production is a rare process and therefore estimation of PGs exiting a patient during a proton treatment plan executed by a Monte Carlo (MC) simulation converges slowly. Recently, different approaches to accelerating the estimation of PG yield have been presented. Sterpin et al (2015 Phys. Med. Biol. 60 4915-46) described a fast analytic method, which is still sensitive to heterogeneities. El Kanawati et al (2015 Phys. Med. Biol. 60 8067-86) described a variance reduction method (pgTLE) that accelerates the PG estimation by precomputing PG production probabilities as a function of energy and target materials, but has as a drawback that the proposed method is limited to analytical phantoms. We present a two-stage variance reduction method, named voxelized pgTLE (vpgTLE), that extends pgTLE to voxelized volumes. As a preliminary step, PG production probabilities are precomputed once and stored in a database. In stage 1, we simulate the interactions between the treatment plan and the patient CT with low statistic MC to obtain the spatial and spectral distribution of the PGs. As primary particles are propagated throughout the patient CT, the PG yields are computed in each voxel from the initial database, as a function of the current energy of the primary, the material in the voxel and the step length. The result is a voxelized image of PG yield, normalized to a single primary. The second stage uses this intermediate PG image as a source to generate and propagate the number of PGs throughout the rest of the scene geometry, e.g. into a detection device, corresponding to the number of primaries desired. We achieved a gain of around 103 for both a geometrical heterogeneous phantom and a complete patient CT treatment plan with respect to analog MC, at a convergence level of 2% relative uncertainty in the 90% yield region. The method agrees with reference analog MC simulations to within 10-4, with negligible bias. Gains per voxel range from 102 to 104. The presented generic PG yield estimator is drop-in usable with any geometry and beam configuration. We showed a gain of three orders of magnitude compared to analog MC. With a large number of voxels and materials, memory consumption may be a concern and we discuss the consequences and possible tradeoffs. The method is available as part of Gate 7.2.


Assuntos
Simulação por Computador , Raios gama , Método de Monte Carlo , Imagens de Fantasmas , Terapia com Prótons , Radiometria/instrumentação , Humanos , Prótons , Radiometria/métodos , Radioterapia Assistida por Computador
10.
Phys Med Biol ; 60(20): 8067-86, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26425853

RESUMO

A Monte Carlo (MC) variance reduction technique is developed for prompt-γ emitters calculations in proton therapy. Prompt-γ emitted through nuclear fragmentation reactions and exiting the patient during proton therapy could play an important role to help monitoring the treatment. However, the estimation of the number and the energy of emitted prompt-γ per primary proton with MC simulations is a slow process. In order to estimate the local distribution of prompt-γ emission in a volume of interest for a given proton beam of the treatment plan, a MC variance reduction technique based on a specific track length estimator (TLE) has been developed. First an elemental database of prompt-γ emission spectra is established in the clinical energy range of incident protons for all elements in the composition of human tissues. This database of the prompt-γ spectra is built offline with high statistics. Regarding the implementation of the prompt-γ TLE MC tally, each proton deposits along its track the expectation of the prompt-γ spectra from the database according to the proton kinetic energy and the local material composition. A detailed statistical study shows that the relative efficiency mainly depends on the geometrical distribution of the track length. Benchmarking of the proposed prompt-γ TLE MC technique with respect to an analogous MC technique is carried out. A large relative efficiency gain is reported, ca. 10(5).


Assuntos
Simulação por Computador , Raios gama , Modelos Estatísticos , Método de Monte Carlo , Imagens de Fantasmas , Terapia com Prótons , Radiometria/instrumentação , Humanos , Transferência Linear de Energia , Neoplasias/radioterapia , Radiometria/métodos , Radioterapia Assistida por Computador , Software
11.
Phys Med Biol ; 60(19): 7585-99, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26378805

RESUMO

Proton computed tomography (CT) has been described as a solution for imaging the proton stopping power of patient tissues, therefore reducing the uncertainty of the conversion of x-ray CT images to relative stopping power (RSP) maps and its associated margins. This study aimed to investigate this assertion under the assumption of ideal detection systems. We have developed a Monte Carlo framework to assess proton CT performances for the main steps of a proton therapy treatment planning, i.e. proton or x-ray CT imaging, conversion to RSP maps based on the calibration of a tissue phantom, and proton dose simulations. Irradiations of a computational phantom with pencil beams were simulated on various anatomical sites and the proton range was assessed on the reference, the proton CT-based and the x-ray CT-based material maps. Errors on the tissue's RSP reconstructed from proton CT were found to be significantly smaller and less dependent on the tissue distribution. The imaging dose was also found to be much more uniform and conformal to the primary beam. The mean absolute deviation for range calculations based on x-ray CT varies from 0.18 to 2.01 mm depending on the localization, while it is smaller than 0.1 mm for proton CT. Under the assumption of a perfect detection system, proton range predictions based on proton CT are therefore both more accurate and more uniform than those based on x-ray CT.


Assuntos
Método de Monte Carlo , Imagens de Fantasmas , Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Calibragem , Humanos , Dosagem Radioterapêutica
12.
Med Phys ; 42(5): 2342-6, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25979028

RESUMO

PURPOSE: The purpose of this study was to experimentally assess the possibility to monitor carbon ion range variations--due to tumor shift and/or elongation or shrinking--using prompt-gamma (PG) emission with inhomogeneous phantoms. Such a study is related to the development of PG monitoring techniques to be used in a carbon ion therapy context. METHODS: A 95 MeV/u carbon ion beam was used to irradiate phantoms with a variable density along the ion path to mimic the presence of bone and lung in homogeneous humanlike tissue. PG profiles were obtained after a longitudinal scan of the phantoms. A setup comprising a narrow single-slit collimator and two detectors placed at 90° with respect to the beam axis was used. The time of flight technique was applied to allow the selection between PG and background events. RESULTS: Using the positions at 50% entrance and 50% falloff of the PG profiles, a quantity called prompt-gamma profile length (PGPL) is defined. It is possible to observe shifts in the PGPL when there are absolute ion range shifts as small as 1-2 mm. Quantitatively, for an ion range shift of -1.33 ± 0.46 mm (insertion of a Teflon slab), a PGPL difference of -1.93 ± 0.58 mm and -1.84 ± 1.27 mm is obtained using a BaF2 and a NaI(Tl) detector, respectively. In turn, when an ion range shift of 4.59 ± 0.42 mm (insertion of a lung-equivalent material slab) is considered, the difference is of 4.10 ± 0.54 and 4.39 ± 0.80 mm for the same detectors. CONCLUSIONS: Herein, experimental evidence of the usefulness of employing PG to monitor carbon ion range using inhomogeneous phantoms is presented. Considering the homogeneous phantom as reference, the results show that the information provided by the PG emission allows for detecting ion range shifts as small as 1-2 mm. When considering the expected PG emission from an energy slice in a carbon ion therapy scenario, the experimental setup would allow to retrieve the same PGPL as the high statistics of the full experimental dataset in 58% of the times. However, this success rate increases to 93% when using a better optimized setup by means of Monte Carlo simulations.


Assuntos
Carbono , Íons , Simulação por Computador , Humanos , Soluções Hipertônicas , Modelos Biológicos , Método de Monte Carlo , Imagens de Fantasmas , Polimetil Metacrilato , Politetrafluoretileno , Radiometria
13.
Phys Med Biol ; 60(2): 565-94, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25548833

RESUMO

Prompt-gamma emission detection is a promising technique for hadrontherapy monitoring purposes. In this regard, obtaining prompt-gamma yields that can be used to develop monitoring systems based on this principle is of utmost importance since any camera design must cope with the available signal. Herein, a comprehensive study of the data from ten single-slit experiments is presented, five consisting in the irradiation of either PMMA or water targets with lower and higher energy carbon ions, and another five experiments using PMMA targets and proton beams. Analysis techniques such as background subtraction methods, geometrical normalization, and systematic uncertainty estimation were applied to the data in order to obtain absolute prompt-gamma yields in units of prompt-gamma counts per incident ion, unit of field of view, and unit of solid angle. At the entrance of a PMMA target, where the contribution of secondary nuclear reactions is negligible, prompt-gamma counts per incident ion, per millimetre and per steradian equal to (124 ± 0.7stat ± 30sys) × 10(-6) for 95 MeV u(-1) carbon ions, (79 ± 2stat ± 23sys) × 10(-6) for 310 MeV u(-1) carbon ions, and (16 ± 0.07stat ± 1sys) × 10(-6) for 160 MeV protons were found for prompt gammas with energies higher than 1 MeV. This shows a factor 5 between the yields of two different ions species with the same range in water (160 MeV protons and 310 MeV u(-1) carbon ions). The target composition was also found to influence the prompt-gamma yield since, for 300/310 MeV u(-1) carbon ions, a 42% greater yield ((112 ± 1stat ± 22sys) × 10(-6) counts ion(-1) mm(-1) sr(-1)) was obtained with a water target compared to a PMMA one.


Assuntos
Raios gama , Terapia com Prótons/métodos , Prótons , Doses de Radiação , Terapia com Prótons/instrumentação
14.
Phys Med Biol ; 59(24): 7653-74, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25415207

RESUMO

Hadrontherapy is an innovative radiation therapy modality for which one of the main key advantages is the target conformality allowed by the physical properties of ion species. However, in order to maximise the exploitation of its potentialities, online monitoring is required in order to assert the treatment quality, namely monitoring devices relying on the detection of secondary radiations. Herein is presented a method based on Monte Carlo simulations to optimise a multi-slit collimated camera employing time-of-flight selection of prompt-gamma rays to be used in a clinical scenario. In addition, an analytical tool is developed based on the Monte Carlo data to predict the expected precision for a given geometrical configuration. Such a method follows the clinical workflow requirements to simultaneously have a solution that is relatively accurate and fast. Two different camera designs are proposed, considering different endpoints based on the trade-off between camera detection efficiency and spatial resolution to be used in a proton therapy treatment with active dose delivery and assuming a homogeneous target.


Assuntos
Raios gama , Método de Monte Carlo , Terapia com Prótons , Radiometria/instrumentação , Radiometria/normas , Radioterapia Assistida por Computador/instrumentação , Radioterapia Assistida por Computador/normas , Desenho de Equipamento , Humanos , Sistemas On-Line , Imagens de Fantasmas , Polimetil Metacrilato/química
15.
Phys Med Biol ; 59(7): 1747-72, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24619152

RESUMO

Monte Carlo simulations are nowadays essential tools for a wide range of research topics in the field of radiotherapy. They also play an important role in the effort to develop a real-time monitoring system for quality assurance in proton and carbon ion therapy, by means of prompt-gamma detection. The internal theoretical nuclear models of Monte Carlo simulation toolkits are of decisive importance for the accurate description of neutral or charged particle emission, produced by nuclear interactions between beam particles and target nuclei. We assess the performance of Geant4 nuclear models in the context of prompt-gamma emission, comparing them with experimental data from proton and carbon ion beams. As has been shown in the past and further indicated in our study, the prompt-gamma yields are consistently overestimated by Geant4 by a factor of about 100% to 200% over an energy range from 80 to 310 MeV/u for the case of (12)C, and to a lesser extent for 160 MeV protons. Furthermore, we focus on the quantum molecular dynamics (QMD) modeling of ion-ion collisions, in order to optimize its description of light nuclei, which are abundant in the human body and mainly anticipated in hadrontherapy applications. The optimization has been performed by benchmarking QMD free parameters with well established nuclear properties. In addition, we study the effect of this optimization on charged particle emission. With the usage of the proposed parameter values, discrepancies reduce to less than 70%, with the highest values being attributed to the nucleon-ion induced prompt-gammas. This conclusion, also confirmed by the disagreement we observe in the case of proton beams, indicates the need for further investigation on nuclear models which describe proton and neutron induced nuclear reactions.


Assuntos
Raios gama/uso terapêutico , Método de Monte Carlo , Radioterapia/métodos , Humanos
16.
Phys Med Biol ; 59(5): 1327-38, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24556873

RESUMO

Prompt-gamma profile was measured at WPE-Essen using 160 MeV protons impinging a movable PMMA target. A single collimated detector was used with time-of-flight (TOF) to reduce the background due to neutrons. The target entrance rise and the Bragg peak falloff retrieval precision was determined as a function of incident proton number by a fitting procedure using independent data sets. Assuming improved sensitivity of this camera design by using a greater number of detectors, retrieval precisions of 1 to 2 mm (rms) are expected for a clinical pencil beam. TOF improves the contrast-to-noise ratio and the performance of the method significantly.


Assuntos
Câmaras gama , Radiometria/instrumentação , Radioterapia Assistida por Computador/instrumentação , Radioterapia de Alta Energia/instrumentação , Sistemas Computacionais , Desenho de Equipamento , Análise de Falha de Equipamento , Raios gama , Terapia com Prótons
17.
Phys Med Biol ; 58(13): 4563-77, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23771015

RESUMO

Online dose monitoring in proton therapy is currently being investigated with prompt-gamma (PG) devices. PG emission was shown to be correlated with dose deposition. This relationship is mostly unknown under real conditions. We propose a machine learning approach based on simulations to create optimized treatment-specific classifiers that detect discrepancies between planned and delivered dose. Simulations were performed with the Monte-Carlo platform Gate/Geant4 for a spot-scanning proton therapy treatment and a PG camera prototype currently under investigation. The method first builds a learning set of perturbed situations corresponding to a range of patient translation. This set is then used to train a combined classifier using distal falloff and registered correlation measures. Classifier performances were evaluated using receiver operating characteristic curves and maximum associated specificity and sensitivity. A leave-one-out study showed that it is possible to detect discrepancies of 5 mm with specificity and sensitivity of 85% whereas using only distal falloff decreases the sensitivity down to 77% on the same data set. The proposed method could help to evaluate performance and to optimize the design of PG monitoring devices. It is generic: other learning sets of deviations, other measures and other types of classifiers could be studied to potentially reach better performance. At the moment, the main limitation lies in the computation time needed to perform the simulations.


Assuntos
Inteligência Artificial , Neoplasias da Próstata/radioterapia , Terapia com Prótons , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Alta Energia/métodos , Radioterapia Guiada por Imagem/métodos , Raios gama , Humanos , Masculino , Método de Monte Carlo , Neoplasias da Próstata/diagnóstico por imagem , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/métodos
18.
Phys Med Biol ; 58(9): 2879-99, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23571094

RESUMO

Monte Carlo simulations play a crucial role for in-vivo treatment monitoring based on PET and prompt gamma imaging in proton and carbon-ion therapies. The accuracy of the nuclear fragmentation models implemented in these codes might affect the quality of the treatment verification. In this paper, we investigate the nuclear models implemented in GATE/Geant4 and FLUKA by comparing the angular and energy distributions of secondary particles exiting a homogeneous target of PMMA. Comparison results were restricted to fragmentation of (16)O and (12)C. Despite the very simple target and set-up, substantial discrepancies were observed between the two codes. For instance, the number of high energy (>1 MeV) prompt gammas exiting the target was about twice as large with GATE/Geant4 than with FLUKA both for proton and carbon ion beams. Such differences were not observed for the predicted annihilation photon production yields, for which ratios of 1.09 and 1.20 were obtained between GATE and FLUKA for the proton beam and the carbon ion beam, respectively. For neutrons and protons, discrepancies from 14% (exiting protons-carbon ion beam) to 57% (exiting neutrons-proton beam) have been identified in production yields as well as in the energy spectra for neutrons.


Assuntos
Radioterapia com Íons Pesados/métodos , Método de Monte Carlo , Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Nêutrons , Dosagem Radioterapêutica , Fatores de Tempo
19.
Phys Med Biol ; 57(14): 4655-69, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22750688

RESUMO

Proton imaging can be seen as a powerful technique for online monitoring of ion range during carbon ion therapy irradiations. Indeed, a large number of secondary protons are created during nuclear reactions, and many of these protons are likely to escape from the patient even for deep-seated tumors, carrying accurate information on the reaction vertex position. Two detection techniques have been considered: (i) double-proton detection by means of two forward-located trackers and (ii) single-proton detection in coincidence with the incoming carbon ion detected by means of a beam hodoscope. Geant4 simulations, validated by proton yield measurements performed at GANIL and GSI, show that ion-range monitoring is accessible on a pencil-beam basis with the single-proton imaging technique. Millimetric precision on the Bragg peak position is expected in the ideal case of homogeneous targets. The uncertainties in more realistic conditions should be investigated, in particular the influence of tissue heterogeneity in the very last part of the ion path (about 20 mm).


Assuntos
Carbono/uso terapêutico , Diagnóstico por Imagem/métodos , Prótons , Radioterapia/métodos , Estudos de Viabilidade , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...