Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 271(6): 697-708, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15221454

RESUMO

Genes involved in storage carbohydrate metabolism are coordinately induced when yeast cells are subjected to conditions of stress, or when they exit the exponential growth phase on glucose. We show that the STress Responsive Elements (STREs) present in the promoter of GSY2 are essential for gene activation under conditions of stress, but dispensable for gene induction and glycogen accumulation at the diauxic shift on glucose. Using serial promoter deletion, we found that the latter induction could not be attributed to a single cis -regulatory sequence, and present evidence that this mechanism depends on combinatorial transcriptional control by signalling pathways involving the protein kinases Pho85, Snf1 and PKA. Two contiguous regions upstream of the GSY2 coding region are necessary for negative control by the cyclin-dependent protein kinase Pho85, one of which is a 14-bp G/C-rich sequence. Positive control by Snf1 is mediated by Mig1p, which acts indirectly on the distal part of the GSY2 promoter. The PKA pathway has the most pronounced effect on GSY2, since transcription of this gene is almost completely abolished in an ira1ira2 mutant strain in which PKA is hyperactive. The potent negative effect of PKA is dependent upon a branched pathway involving the transcription factors Msn2/Msn4p and Sok2p. The SOK2 branch was found to be effective only under conditions of high PKA activity, as in a ira1ira2 mutant, and this effect was independent of Msn2/4p. The Msn2/4p branch, on the other hand, positively controls GSY2 expression directly through the STREs, and indirectly via a factor that still remains to be discovered. In summary, this study shows that the transcription of GSY2 is regulated by several different signalling pathways which reflect the numerous factors that influence glycogen synthesis in yeast, and suggests that the PKA pathway must be deactivated to allow gene induction at the diauxic shift.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Quinases Ciclina-Dependentes/fisiologia , Regulação Fúngica da Expressão Gênica , Glicogênio Sintase/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Transcrição Gênica , Regiões Promotoras Genéticas , Elementos de Resposta/fisiologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Ativação Transcricional
2.
FEMS Microbiol Lett ; 193(1): 105-10, 2000 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-11094287

RESUMO

The YPR184w gene encodes a 1536-amino acid protein that is 34-39% identical to the mammal, Drosophila melanogaster and Caenorhabditis elegans glycogen debranching enzyme. The N-terminal part of the protein possesses the four conserved sequences of the alpha-amylase superfamily, while the C-terminal part displays 50% similarity with the C-terminal of other eukaryotic glycogen debranching enzymes. Reliable measurement of alpha-1,4-glucanotransferase and alpha-1, 6-glucosidase activity of the yeast debranching enzyme was determined in strains overexpressing YPR184w. The alpha-1, 4-glucanotransferase activity of a partially purified preparation of debranching enzyme preferentially transferred maltosyl units than maltotriosyl. Deletion of YPR184w prevents glycogen degradation, whereas overexpression had no effect on the rate of glycogen breakdown. In response to stress and growth conditions, the transcriptional control of YPR184w gene, renamed GDB1 (for Glycogen DeBranching gene), is strictly identical to that of other genes involved in glycogen metabolism.


Assuntos
Genes Fúngicos , Sistema da Enzima Desramificadora do Glicogênio/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Animais , Deleção de Genes , Expressão Gênica , Glucose/metabolismo , Glicogênio/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/química , Sistema da Enzima Desramificadora do Glicogênio/isolamento & purificação , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Homologia de Sequência de Aminoácidos
3.
Curr Genet ; 26(5-6): 477-85, 1994.
Artigo em Inglês | MEDLINE | ID: mdl-7874742

RESUMO

We have previously described a eukaryotic heterologous expression system, with the urf13TW gene in yeast, which mimics the disease susceptibility associated with the Texas cytoplasmic male sterility in maize. This yeast model was used to isolate yeast nuclear mutants conferring methomyl resistance. The genetic strategy we have developed focused on screening for nuclear dominant yeast mutations which restore methomyl resistance. MRG1-1, a yeast nuclear dominant allele, was identified as a methomyl-resistance restorer. We have shown that methomyl resistance co-segregated with a pleiotropic phenotype in the heterozygous MRG1-1/MRG1 diploids, detectable even in the absence of the maize-derived mitochondrial protein and/or methomyl. We observed an increase in oxygen uptake, a significant decrease of the levels of cytochrome aa3, and a decrease in the growth yield. This phenotype is influenced by the carbon source and the results suggest a defect in the adaptation to the respiratory pathway in MRG1-1 yeast cells.


Assuntos
Genes Fúngicos , Genes de Plantas , Metomil/farmacologia , Saccharomyces cerevisiae/genética , Zea mays/genética , Alelos , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Núcleo Celular/metabolismo , Diploide , Resistência Microbiana a Medicamentos/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Genes Dominantes , Genótipo , Haploidia , Mutagênese , Consumo de Oxigênio/efeitos dos fármacos , Fenótipo , Reprodução , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...