Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 795: 148834, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34252764

RESUMO

Studies have demonstrated that SARS-CoV-2 RNA can be detected in the feces of infected individuals. This finding spurred investigation into using wastewater-based epidemiology (WBE) to monitor SARS-CoV-2 RNA and track the appearance and spread of COVID-19 in communities. SARS-CoV-2 is present at low levels in wastewater, making sample concentration a prerequisite for sensitive detection and utility in WBE. Whereas common methods for isolating viral genetic material are biased toward intact virus isolation, it is likely that a relatively low percentage of the total SARS-CoV-2 RNA genome in wastewater is contained within intact virions. Therefore, we hypothesized that a direct unbiased total nucleic acid(TNA) extraction method could overcome the cumbersome protocols, variability and low recovery rates associated with the former methods. This led to development of a simple, rapid, and modular alternative to existing purification methods. In an initial concentration step, chaotropic agents are added to raw sewage allowing binding of nucleic acid from free nucleoprotein complexes, partially intact, and intact virions to a silica matrix. The eluted nucleic acid is then purified using manual or semi-automated methods. RT-qPCR enzyme mixes were formulated that demonstrate substantial inhibitor resistance. In addition, multiplexed probe-based RT-qPCR assays detecting the N1, N2 (nucleocapsid) and E (envelope) gene fragments of SARS-CoV-2 were developed. The RT-qPCR assays also contain primers and probes to detect Pepper Mild Mottle Virus (PMMoV), a fecal indicator RNA virus present in wastewater, and an exogenous control RNA to measure effects of RT-qPCR inhibitors. Using this workflow, we monitored wastewater samples from three wastewater treatment plants (WWTP) in Dane County, Wisconsin. We also successfully sequenced a subset of samples to ensure compatibility with a SARS-CoV-2 amplicon panel and demonstrated the potential for SARS-CoV-2 variant detection. Data obtained here underscore the potential for wastewater surveillance of SARS-CoV-2 and other infectious agents in communities.


Assuntos
COVID-19 , Ácidos Nucleicos , Humanos , RNA Viral , SARS-CoV-2
2.
Nat Struct Mol Biol ; 20(6): 740-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23644595

RESUMO

IscR from Escherichia coli is an unusual metalloregulator in that both apo and iron sulfur (Fe-S)-IscR regulate transcription and exhibit different DNA binding specificities. Here, we report structural and biochemical studies of IscR suggesting that remodeling of the protein-DNA interface upon Fe-S ligation broadens the DNA binding specificity of IscR from binding the type 2 motif only to both type 1 and type 2 motifs. Analysis of an apo-IscR variant with relaxed target-site discrimination identified a key residue in wild-type apo-IscR that, we propose, makes unfavorable interactions with a type 1 motif. Upon Fe-S binding, these interactions are apparently removed, thereby allowing holo-IscR to bind both type 1 and type 2 motifs. These data suggest a unique mechanism of ligand-mediated DNA site recognition, whereby metallocluster ligation relocates a protein-specificity determinant to expand DNA target-site selection, allowing a broader transcriptomic response by holo-IscR.


Assuntos
DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Metais/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/metabolismo , Modelos Biológicos , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Especificidade por Substrato
3.
Biochemistry ; 51(22): 4453-62, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22583201

RESUMO

IscR is an Fe-S cluster-containing transcription factor involved in a homeostatic mechanism that controls Fe-S cluster biogenesis in Escherichia coli. Although IscR has been proposed to act as a sensor of the cellular demands for Fe-S cluster biogenesis, the mechanism by which IscR performs this function is not known. In this study, we investigated the biochemical properties of the Fe-S cluster of IscR to gain insight into the proposed sensing activity. Mössbauer studies revealed that IscR contains predominantly a reduced [2Fe-2S](+) cluster in vivo. However, upon anaerobic isolation of IscR, some clusters became oxidized to the [2Fe-2S](2+) form. Cluster oxidation did not, however, alter the affinity of IscR for its binding site within the iscR promoter in vitro, indicating that the cluster oxidation state is not important for regulation of DNA binding. Furthermore, characterization of anaerobically isolated IscR using resonance Raman, Mössbauer, and nuclear magnetic resonance spectroscopies leads to the proposal that the [2Fe-2S] cluster does not have full cysteinyl ligation. Mutagenesis studies indicate that, in addition to the three previously identified cysteine residues (Cys92, Cys98, and Cys104), the highly conserved His107 residue is essential for cluster ligation. Thus, these data suggest that IscR binds the cluster with an atypical ligation scheme of three cysteines and one histidine, a feature that may be relevant to the proposed function of IscR as a sensor of cellular Fe-S cluster status.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas Ferro-Enxofre/química , Fatores de Transcrição/química , DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Histidina/química , Proteínas Ferro-Enxofre/metabolismo , Oxirredução , Ligação Proteica , Espectroscopia de Mossbauer , Análise Espectral Raman , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA