Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(21): 210401, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31809126

RESUMO

Dynamical decoupling (DD) is a powerful method for controlling arbitrary open quantum systems. In quantum spin control, DD generally involves a sequence of timed spin flips (π rotations) arranged to either average out or selectively enhance coupling to the environment. Experimentally, errors in the spin flips are inevitably introduced, motivating efforts to optimize error-robust DD. Here we invert this paradigm: by introducing particular control "errors" in standard DD, namely, a small constant deviation from perfect π rotations (pulse adjustments), we show we obtain protocols that retain the advantages of DD while introducing the capabilities of quantum state readout and polarization transfer. We exploit this nuclear quantum state selectivity on an ensemble of nitrogen-vacancy centers in diamond to efficiently polarize the ^{13}C quantum bath. The underlying physical mechanism is generic and paves the way to systematic engineering of pulse-adjusted protocols with nuclear state selectivity for quantum control applications.

2.
Nano Lett ; 19(7): 4543-4550, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31150580

RESUMO

The precise measurement of mechanical stress at the nanoscale is of fundamental and technological importance. In principle, all six independent variables of the stress tensor, which describe the direction and magnitude of compression/tension and shear stress in a solid, can be exploited to tune or enhance the properties of materials and devices. However, existing techniques to probe the local stress are generally incapable of measuring the entire stress tensor. Here, we make use of an ensemble of atomic-sized in situ strain sensors in diamond (nitrogen-vacancy defects) to achieve spatial mapping of the full stress tensor, with a submicrometer spatial resolution and a sensitivity of the order of 1 MPa (10 MPa) for the shear (axial) stress components. To illustrate the effectiveness and versatility of the technique, we apply it to a broad range of experimental situations, including mapping the stress induced by localized implantation damage, nanoindents, and scratches. In addition, we observe surprisingly large stress contributions from functional electronic devices fabricated on the diamond and also demonstrate sensitivity to deformations of materials in contact with the diamond. Our technique could enable in situ measurements of the mechanical response of diamond nanostructures under various stimuli, with potential applications in strain engineering for diamond-based quantum technologies and in nanomechanical sensing for on-chip mass spectroscopy.

3.
Nat Commun ; 6: 6733, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25828294

RESUMO

The capacity to propagate magnetic domain walls with spin-polarized currents underpins several schemes for information storage and processing using spintronic devices. A key question involves the internal structure of the domain walls, which governs their response to certain current-driven torques such as the spin Hall effect. Here we show that magnetic microscopy based on a single nitrogen-vacancy defect in diamond can provide a direct determination of the internal wall structure in ultrathin ferromagnetic films under ambient conditions. We find pure Bloch walls in Ta/CoFeB(1 nm)/MgO, while left-handed Néel walls are observed in Pt/Co(0.6 nm)/AlOx. The latter indicates the presence of a sizable interfacial Dzyaloshinskii-Moriya interaction, which has strong bearing on the feasibility of exploiting novel chiral states such as skyrmions for information technologies.

4.
Science ; 344(6190): 1366-9, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24948732

RESUMO

The control of domain walls in magnetic wires underpins an emerging class of spintronic devices. Propagation of these walls in imperfect media requires defects that pin them to be characterized on the nanoscale. Using a magnetic microscope based on a single nitrogen-vacancy (NV) center in diamond, we report domain-wall imaging on a 1-nanometer-thick ferromagnetic nanowire and directly observe Barkhausen jumps between two pinning sites spaced 50 nanometers apart. We further demonstrate in situ laser control of these jumps, which allows us to drag the domain wall along the wire and map the pinning landscape. Our work demonstrates the potential of NV microscopy to study magnetic nano-objects in complex media, whereas controlling domain walls with laser light may find an application in spintronic devices.

5.
Rep Prog Phys ; 77(5): 056503, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24801494

RESUMO

The isolated electronic spin system of the nitrogen-vacancy (NV) centre in diamond offers unique possibilities to be employed as a nanoscale sensor for detection and imaging of weak magnetic fields. Magnetic imaging with nanometric resolution and field detection capabilities in the nanotesla range are enabled by the atomic-size and exceptionally long spin-coherence times of this naturally occurring defect. The exciting perspectives that ensue from these characteristics have triggered vivid experimental activities in the emerging field of 'NV magnetometry'. It is the purpose of this article to review the recent progress in high-sensitivity nanoscale NV magnetometry, generate an overview of the most pertinent results of the last years and highlight perspectives for future developments. We will present the physical principles that allow for magnetic field detection with NV centres and discuss first applications of NV magnetometers that have been demonstrated in the context of nano magnetism, mesoscopic physics and the life sciences.

6.
Nat Commun ; 4: 2279, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23900221

RESUMO

Despite decades of advances in magnetic imaging, obtaining direct, quantitative information with nanometre scale spatial resolution remains an outstanding challenge. Recently, a technique has emerged that employs a single nitrogen-vacancy defect in diamond as an atomic-size magnetometer, which promises significant advances. However, the effectiveness of the technique when applied to magnetic nanostructures remains to be demonstrated. Here we use a scanning nitrogen-vacancy magnetometer to image a magnetic vortex, which is one of the most iconic objects of nanomagnetism, owing to the small size (~10 nm) of the vortex core. We report three-dimensional, vectorial and quantitative measurements of the stray magnetic field emitted by a vortex in a ferromagnetic square dot, including the detection of the vortex core. We find excellent agreement with micromagnetic simulations, both for regular vortex structures and for higher-order magnetization states. These experiments establish scanning nitrogen-vacancy magnetometry as a practical and unique tool for fundamental studies in nanomagnetism.

7.
Opt Express ; 20(13): 13738-47, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22714439

RESUMO

While freely propagating photons cannot be focused below their diffraction limit, surface-plasmon polaritons follow the metallic surface to which they are bound, and can lead to extremely sub-wavelength energy volumes. These properties are lost at long mid-infrared and THz wavelengths where metals behave as quasi-perfect conductors, but can in principle be recovered by artificially tailoring the surface-plasmon dispersion. We demonstrate - in the important mid-infrared range of the electromagnetic spectrum - the generation onto a semiconductor chip of plasmonic excitations which can travel along long distances, on bent paths, to be finally focused into a sub-wavelength volume. The demonstration of these advanced functionalities is supported by full near-field characterizations of the electromagnetic field distribution on the surface of the active plasmonic device.


Assuntos
Modelos Teóricos , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador , Campos Eletromagnéticos , Raios Infravermelhos , Luz , Espalhamento de Radiação
8.
Opt Express ; 19(19): 18155-63, 2011 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-21935181

RESUMO

Recently a surface plasmon polariton (SPP) source based on an electrically operated semiconductor laser has been demonstrated. Here we present a numerical investigation of the light-SPP coupling process involved in the device. The problem consists in the coupling via a diffraction grating between a dielectric waveguide mode--the laser mode--and a SPP mode. The issue of the coupling efficiency is discussed, and the dependence on various geometrical parameters of both the grating and the dielectric waveguide is studied in detail. A maximum coupling efficiency of ≈24% is obtained at telecom wavelengths, which could lead to a high-power integrated SPP source when combined to a laser medium.

9.
Phys Rev Lett ; 104(22): 226806, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20867196

RESUMO

Surface-plasmon polaritons (SPPs) are propagating electromagnetic modes bound at a metal-dielectric interface. We report on electrical generation of SPPs by reproducing the analogue in the near field of the slit-doublet experiment, in a device which includes all the building blocks required for a fully integrated plasmonic active source: an electrical generator of SPPs, a coupler, and a passive metallic waveguide. SPPs are generated upon injection of electrical current, and they are then launched at the edges of a passive metallic strip. The interference fringes arising from the plasmonic standing wave on the surface of the metallic strip are unambiguously detected with apertureless near-field scanning optical microscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...