Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 2(12): 5635-5647, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34381958

RESUMO

Background: The toxicity of inhaled silver nanoparticles on contractile and pro-inflammatory airway smooth muscle cells (ASMCs) that control airway calibre is unknown. We explored the oxidative activities and sulfidation processes of the toxic-inflammatory response. Method: Silver nanospheres (AgNSs) of 20 nm and 50 nm diameter and silver nanowires (AgNWs), short S-AgNWs, 1.5 µm and long L-AgNWs, 10 µm, both 72 nm in diameter were manufactured. We measured their effects on cell proliferation, mitochondrial reactive oxygen species (ROS) release and membrane potential, and also performed electron microscopic studies. Main results and findings: The greatest effects were observed for the smallest particles with the highest specific surface area and greatest solubility that were avidly internalised. ASMCs exposed to 20 nm AgNSs (25 µg mL-1) for 72 hours exhibited a significant decrease in DNA incorporation (-72.4%; p < 0.05), whereas neither the 50 nm AgNSs nor the s-AgNWs altered DNA synthesis or viability. There was a small reduction in ASMC proliferation for the smaller AgNS, although Ag+ at 25 µL mL-1 reduced DNA synthesis by 93.3% (p < 0.001). Mitochondrial potential was reduced by both Ag+ (25 µg mL-1) by 47.1% and 20 nm Ag NSs (25 µg mL-1) by 40.1% (*both at p < 0.05), but was not affected by 50 nm AgNSs and the AgNWs. None of the samples showed a change in ROS toxicity. However, malondialdehyde release, associated with greater total ROS, was observed for all AgNPs, to an extent following the geometric size (20 nm AgNS: 213%, p < 0.01; 50 nm AgNS: 179.5%, p < 0.01 and L-AgNWs by 156.2%, p < 0.05). The antioxidant, N-acetylcysteine, prevented the reduction in mitochondrial potential caused by 20 nm AgNSs. The smaller nanostructures were internalised and dissolved within the ASMCs with the formation of non-reactive silver sulphide (Ag2S) on their surface, but with very little uptake of L-AgNWs. When ASMCs were incubated with H2S-producing enzyme inhibitors, the spatial extent of Ag2S formation was much greater. Conclusion: The intracellular toxicity of AgNPs in ASMCs is determined by the solubility of Ag+ released and the sulfidation process, effects related to particle size and geometry. Passivation through sulfidation driven by biogenic H2S can outcompete dissolution, thus reducing the toxicity of the smaller intracellular Ag nanostructures.

2.
Part Fibre Toxicol ; 15(1): 24, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29792201

RESUMO

BACKGROUND: Nanomaterial inhalation represents a potential hazard for respiratory conditions such as asthma. Cerium dioxide nanoparticles (CeO2NPs) have the ability to modify disease outcome but have not been investigated for their effect on models of asthma and inflammatory lung disease. The aim of this study was to examine the impact of CeO2NPs in a house dust mite (HDM) induced murine model of asthma. RESULTS: Repeated intranasal instillation of CeO2NPs in the presence of HDM caused the induction of a type II inflammatory response, characterised by increased bronchoalveolar lavage eosinophils, mast cells, total plasma IgE and goblet cell metaplasia. This was accompanied by increases in IL-4, CCL11 and MCPT1 gene expression together with increases in the mucin and inflammatory regulators CLCA1 and SLC26A4. CLCA1 and SLC26A4 were also induced by CeO2NPs + HDM co-exposure in air liquid interface cultures of human primary bronchial epithelial cells. HDM induced airway hyperresponsiveness and airway remodelling in mice were not altered with CeO2NPs co-exposure. Repeated HMD instillations followed by a single exposure to CeO2NPs failed to produce changes in type II inflammatory endpoints but did result in alterations in the neutrophil marker CD177. Treatment of mice with CeO2NPs in the absence of HDM did not have any significant effects. RNA-SEQ was used to explore early effects 24 h after single treatment exposures. Changes in SAA3 expression paralleled increased neutrophil BAL levels, while no changes in eosinophil or lymphocyte levels were observed. HDM resulted in a strong induction of type I interferon and IRF3 dependent gene expression, which was inhibited with CeO2NPs co-exposure. Changes in the expression of genes including CCL20, CXCL10, NLRC5, IRF7 and CLEC10A suggest regulation of dendritic cells, macrophage functionality and IRF3 modulation as key early events in how CeO2NPs may guide pulmonary responses to HDM towards type II inflammation. CONCLUSIONS: CeO2NPs were observed to modulate the murine pulmonary response to house dust mite allergen exposure towards a type II inflammatory environment. As this type of response is present within asthmatic endotypes this finding may have implications for how occupational or incidental exposure to CeO2NPs should be considered for those susceptible to disease.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Asma/induzido quimicamente , Cério/toxicidade , Nanopartículas/toxicidade , Pyroglyphidae/imunologia , Remodelação das Vias Aéreas/imunologia , Animais , Asma/imunologia , Células Cultivadas , Cério/química , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Feminino , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Humanos , Exposição por Inalação/efeitos adversos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Camundongos Endogâmicos BALB C , Nanopartículas/química
3.
Front Pharmacol ; 9: 213, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29632485

RESUMO

Here we examine the organ level toxicology of both carbon black (CB) and silver nanoparticles (AgNP). We aim to determine metal-specific effects to respiratory function, inflammation and potential interactions with lung lining fluid (LLF). C57Bl6/J male mice were intratracheally instilled with saline (control), low (0.05 µg/g) or high (0.5 µg/g) doses of either AgNP or CB 15 nm nanospheres. Lung histology, cytology, surfactant composition and function, inflammatory gene expression, and pulmonary function were measured at 1, 3, and 7 days post-exposure. Acutely, high dose CB resulted in an inflammatory response, increased neutrophilia and cytokine production, without alteration in surfactant composition or respiratory mechanics. Low dose CB had no effect. Neither low nor high dose AgNPs resulted in an acute inflammatory response, but there was an increase in work of breathing. Three days post-exposure with CB, a persistent neutrophilia was noted. High dose AgNP resulted in an elevated number of macrophages and invasion of lymphocytes. Additionally, AgNP treated mice displayed increased expression of IL1B, IL6, CCL2, and IL10. However, there were no significant changes in respiratory mechanics. At day 7, inflammation had resolved in AgNP-treated mice, but tissue stiffness and resistance were significantly decreased, which was accompanied by an increase in surfactant protein D (SP-D) content. These data demonstrate that the presence of metal alters the response of the lung to nanoparticle exposure. AgNP-surfactant interactions may alter respiratory function and result in a delayed immune response, potentially due to modified airway epithelial cell function.

4.
Respir Res ; 17(1): 85, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27435725

RESUMO

BACKGROUND: The increasing use of silver nanoparticles (AgNPs) in consumer products is concerning. We examined the potential toxic effects when inhaled in Brown-Norway (BN) rats with a pre-inflammatory state compared to Sprague-Dawley (SD) rats. METHODS: We determined the effect of AgNPs generated from a spark generator (mass concentration: 600-800 µg/mm(3); mean diameter: 13-16 nm; total lung doses: 8 [Low] and 26-28 [High] µg) inhaled by the nasal route in both rat strains. Rats were sacrificed at day 1 and day 7 after exposure and measurement of lung function. RESULTS: In both strains, there was an increase in neutrophils in bronchoalveolar lavage (BAL) fluid at 24 h at the high dose, with concomitant eosinophilia in BN rats. While BAL inflammatory cells were mostly normalised by Day 7, lung inflammation scores remained increased although not the tissue eosinophil scores. Total protein levels were elevated at both lung doses in both strains. There was an increase in BAL IL-1ß, KC, IL-17, CCL2 and CCL3 levels in both strains at Day 1, mostly at high dose. Phospholipid levels were increased at the high dose in SD rats at Day 1 and 7, while in BN rats, this was only seen at Day 1; surfactant protein D levels decreased at day 7 at the high dose in SD rats, but was increased at Day 1 at the low dose in BN rats. There was a transient increase in central airway resistance and in tissue elastance in BN rats at Day 1 but not in SD rats. Positive silver-staining was seen particularly in lung tissue macrophages in a dose and time-dependent response in both strains, maximal by day 7. Lung silver levels were relatively higher in BN rat and present at day 7 in both strains. CONCLUSIONS: Presence of cellular inflammation and increasing silver-positive macrophages in lungs at day 7, associated with significant levels of lung silver indicate that lung toxicity is persistent even with the absence of airway luminal inflammation at that time-point. The higher levels and persistence of lung silver in BN rats may be due to the pre-existing inflammatory state of the lungs.


Assuntos
Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Pneumonia/induzido quimicamente , Prata/toxicidade , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Mediadores da Inflamação/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/fisiopatologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Masculino , Fosfolipídeos/metabolismo , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/fisiopatologia , Eosinofilia Pulmonar/induzido quimicamente , Eosinofilia Pulmonar/imunologia , Eosinofilia Pulmonar/metabolismo , Proteína D Associada a Surfactante Pulmonar/metabolismo , Ratos Endogâmicos BN , Ratos Sprague-Dawley , Mecânica Respiratória/efeitos dos fármacos , Fatores de Tempo
5.
Nanotoxicology ; 10(1): 118-27, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26152688

RESUMO

Multiple studies have examined the direct cellular toxicity of silver nanoparticles (AgNPs). However, the lung is a complex biological system with multiple cell types and a lipid-rich surface fluid; therefore, organ level responses may not depend on direct cellular toxicity. We hypothesized that interaction with the lung lining is a critical determinant of organ level responses. Here, we have examined the effects of low dose intratracheal instillation of AgNPs (0.05 µg/g body weight) 20 and 110 nm diameter in size, and functionalized with citrate or polyvinylpyrrolidone. Both size and functionalization were significant factors in particle aggregation and lipid interaction in vitro. One day post-intratracheal instillation lung function was assessed, and bronchoalveolar lavage (BAL) and lung tissue collected. There were no signs of overt inflammation. There was no change in surfactant protein-B content in the BAL but there was loss of surfactant protein-D with polyvinylpyrrolidone (PVP)-stabilized particles. Mechanical impedance data demonstrated a significant increase in pulmonary elastance as compared to control, greatest with 110 nm PVP-stabilized particles. Seven days post-instillation of PVP-stabilized particles increased BAL cell counts, and reduced lung function was observed. These changes resolved by 21 days. Hence, AgNP-mediated alterations in the lung lining and mechanical function resolve by 21 days. Larger particles and PVP stabilization produce the largest disruptions. These studies demonstrate that low dose AgNPs elicit deficits in both mechanical and innate immune defense function, suggesting that organ level toxicity should be considered.


Assuntos
Imunidade Inata/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Mecânica Respiratória/efeitos dos fármacos , Prata/toxicidade , Animais , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Respiração com Pressão Positiva , Povidona/farmacologia
6.
PLoS One ; 10(3): e0119726, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25747867

RESUMO

Particle size and surface chemistry are potential determinants of silver nanoparticle (AgNP) respiratory toxicity that may also depend on the lung inflammatory state. We compared the effects of intratracheally-administered AgNPs (20 nm and 110 nm; polyvinylpyrrolidone (PVP) and citrate-capped; 0.1 mg/Kg) in Brown-Norway (BN) and Sprague-Dawley (SD) rats. In BN rats, there was both a neutrophilic and eosinophilic response, while in SD rats, there was a neutrophilic response at day 1, greatest for the 20 nm citrate-capped AgNPs. Eosinophilic cationic protein was increased in bronchoalveolar lavage (BAL) in BN and SD rats on day 1. BAL protein and malondialdehyde levels were increased in BN rats at 1 and 7 days, and BAL KC, CCL11 and IL-13 levels at day 1, with increased expression of CCL11 in lung tissue. Pulmonary resistance increased and compliance decreased at day 1, with persistence at day 7. The 20 nm, but not the 110 nm, AgNPs increased bronchial hyperresponsiveness on day 1, which continued at day 7 for the citrate-capped AgNPs only. The 20 nm versus the 110 nm size were more proinflammatory in terms of neutrophil influx, but there was little difference between the citrate-capped versus the PVP-capped AgNPs. AgNPs can induce pulmonary eosinophilic and neutrophilic inflammation with bronchial hyperresponsiveness, features characteristic of asthma.


Assuntos
Ácido Cítrico/toxicidade , Materiais Revestidos Biocompatíveis/toxicidade , Pulmão/metabolismo , Nanopartículas Metálicas/efeitos adversos , Povidona/análogos & derivados , Prata/toxicidade , Animais , Pulmão/patologia , Masculino , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/patologia , Tamanho da Partícula , Povidona/toxicidade , Ratos , Ratos Sprague-Dawley
8.
Thorax ; 67(2): 179-82, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21680569

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease of unknown aetiology. It has a very poor prognosis and no effective treatment. There are two major barriers to the development of novel treatments in IPF: an incomplete understanding of its pathogenesis and the fact that current models of the disease are poorly predictive of therapeutic response. Recent studies suggest an important role for the alveolar epithelium in the pathogenesis of IPF. However, practical limitations associated with isolation and culture of primary alveolar epithelial cells have hampered progress towards further elucidating their role in the pathogenesis of the disease or developing disease models that accurately reflect the epithelial contribution. The practical limitations of primary alveolar epithelial cell culture can be divided into technical, logistical and regulatory hurdles that need to be overcome to ensure rapid progress towards improved treatment for patients with IPF. To develop a strategy to facilitate alveolar epithelial cell harvest, retrieval and sharing between IPF research groups and to determine how these cells contribute to IPF, a workshop was organised to discuss the central issues surrounding epithelial cells in IPF (ECIPF). The central themes discussed in the workshop have been compiled as the proceedings of the ECIPF.


Assuntos
Células Epiteliais/patologia , Fibrose Pulmonar Idiopática/patologia , Alvéolos Pulmonares/patologia , Técnicas de Cultura de Células , Humanos , Cooperação Internacional , Manejo de Espécimes/métodos , Bancos de Tecidos/legislação & jurisprudência
9.
Respir Res ; 10: 27, 2009 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-19358726

RESUMO

BACKGROUND: The properties of vascular endothelial growth factor (VEGF) as a potent vascular permogen and mitogen have led to investigation of its potential role in lung injury. Alternate spliced VEGF transcript generates several isoforms with potentially differing functions. The purpose of this study was to determine VEGF isoform expression and source in normal and ARDS subjects and investigate the expression and regulation of VEGF isoforms by human alveolar type 2 (ATII) cells. METHODS: VEGF protein expression was assessed immunohistochemically in archival normal and ARDS human lung tissue. VEGF isoform mRNA expression was assessed in human and murine lung tissue. Purified ATII cells were cultured with proinflammatory cytokines prior to RNA extraction/cell supernatant sampling/proliferation assay. MEASUREMENTS AND MAIN RESULTS: VEGF was expressed on alveolar epithelium, vascular endothelium and alveolar macrophages in normal and ARDS human lung tissue. Increases in VEGF expression were detected in later ARDS in comparison to both normal subjects and early ARDS (p < 0.001). VEGF121, VEGF165 and VEGF189 isoform mRNA expression increased in later ARDS (p < 0.05). The ratio of soluble to cell-associated isoforms was lower in early ARDS than normal subjects and later ARDS and also in murine lung injury. ATII cells constitutionally produced VEGF165 and VEGF121 protein which was increased by LPS (p < 0.05). VEGF165 upregulated ATII cell proliferation (p < 0.001) that was inhibited by soluble VEGF receptor 1 (sflt) (p < 0.05). CONCLUSION: These data demonstrate that changes in VEGF isoform expression occur in ARDS which may be related to their production by and mitogenic effect on ATII cells; with potentially significant clinical consequences.


Assuntos
Lesão Pulmonar/genética , Lesão Pulmonar/metabolismo , Pulmão/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Idoso , Animais , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Especificidade da Espécie , Distribuição Tecidual
10.
Am J Respir Crit Care Med ; 179(5): 414-25, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19060230

RESUMO

RATIONALE: Studies in patients and experimental animals provide compelling evidence of the involvement of the major thrombin receptor, proteinase-activated receptor-1 (PAR(1)), and the potent chemokine, chemokine (CC motif) ligand-2 (CCL2)/monocyte chemotactic protein-1, in the pathogenesis of idiopathic pulmonary fibrosis (IPF). PAR(1) knockout mice are protected from bleomycin-induced lung inflammation and fibrosis and this protection is associated with marked attenuation in CCL2 induction. OBJECTIVES: The aim of this study was to determine which cell types represent the major source of PAR(1)-inducible CCL2 in the fibrotic lung. METHODS: Using immunohistochemistry and dual immunofluorescence, we examined PAR(1) and CCL2 expression in the bleomycin model and human IPF lung. PAR(1) and CCL2 gene expression was also assessed in laser-captured alveolar septae from patients with IPF. The ability of PAR(1) to induce CCL2 production by lung epithelial cells was also examined in vitro. MEASUREMENTS AND MAIN RESULTS: We report for the first time that PAR(1) and CCL2 are coexpressed and co-up-regulated on the activated epithelium in fibrotic areas in IPF. Similar observations were found in bleomycin-induced lung injury. Furthermore, we show that thrombin is a potent inducer of CCL2 gene expression and protein release by cultured lung epithelial cells via a PAR(1)-dependent mechanism. CONCLUSIONS: These data support the notion that PAR(1) activation on lung epithelial cells may represent an important mechanism leading to increased local CCL2 release in pulmonary fibrosis. Targeting PAR(1) on the pulmonary epithelium may offer a unique opportunity for therapeutic intervention in pulmonary fibrosis and other inflammatory and fibroproliferative conditions associated with excessive local generation of thrombin and CCL2 release.


Assuntos
Quimiocina CCL2/metabolismo , Fibrose Pulmonar/metabolismo , Receptor PAR-1/metabolismo , Sequência de Aminoácidos , Animais , Bleomicina , Estudos de Casos e Controles , Quimiocina CCL2/biossíntese , Quimiocina CCL2/genética , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Feminino , Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptor PAR-1/biossíntese , Receptor PAR-1/genética , Receptores CCR2/metabolismo , Trombina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...