Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 23(7): 756-768, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37126945

RESUMO

The search for extant microbial life will be a major focus of future astrobiology missions; however, no direct extant life detection instrumentation is included in current missions to Mars. In this study, we developed the semiautomated MicroLife detection platform that collects and processes environmental samples, detects biosignatures, and characterizes microbial activity. This platform is composed of a drill for sample collection, a redox dye colorimetric system for microbial metabolic activity detection and assessment (µMAMA [microfluidics Microbial Activity MicroAssay]), and a MinION sequencer for biosignature detection and characterization of microbial communities. The MicroLife platform was field-tested on White Glacier on Axel Heiberg Island in the Canadian high Arctic, with two extracted ice cores. The µMAMA successfully detected microbial metabolism from the ice cores within 1 day of incubation. The MinION sequencing of the ice cores and the positive µMAMA card identified a microbial community consistent with cold and oligotrophic environments. Furthermore, isolation and identification of microbial isolates from the µMAMA card corroborated the MinION sequencing. Together, these analyses support the MicroLife platform's efficacy in identifying microbes natively present in cryoenvironments and detecting their metabolic activity. Given our MicroLife platform's size and low energy requirements, it could be incorporated into a future landed platform or rovers for life detection.


Assuntos
Exobiologia , Camada de Gelo , Canadá , Regiões Árticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...