Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 30(44): 13199-204, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25343726

RESUMO

We present the interactions and assembly of triblock cylinders at oil-water and air-water interfaces. ABA-type triblock cylinders with different block ratios and surface wettabilities are prepared using a micromolding method. These triblock cylinders at fluid-fluid interfaces induce complex interface deformation depending upon their relative block ratio and the surface wettability. It is observed that triblock cylinders generate octapolar interface deformation at the air-water interface, whereas the same cylinders cause quadrupolar deformation at the oil-water interface. Consequently, the interactions and assembly behavior of these triblock cylinders at each fluid interface strongly depend upon the nature of the interface deformation.


Assuntos
Óleos/química , Água/química , Ar
2.
Langmuir ; 30(1): 220-6, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24359219

RESUMO

The stratum corneum (SC) is the ourtermost layer of the epidermis and has a brick-and-mortar-like structure, in which multilamellar lipid bilayers surround flattened dead cells known as corneocytes. The SC lipid membranes provide the main pathway for the transport of water and other substances through the SC. While the physicochemical properties of the SC can be affected by exogenous materials such as surfactants, little is known about how the water barrier function of the SC lipid membranes is compromised by common surfactants. Here, we study the effect of common anionic surfactants on the water permeability of a model SC lipid membrane using a quartz crystal microbalance with dissipation monitoring (QCM-D). Particularly, the effect of sodium dodecyl sulfate (SDS) and sodium lauryl ether sulfate (SLES) is compared. These two surfactants share commonality in their molecular structure: sulfate in the polar headgroup and the same apolar tail. The mass of the lipid membranes increases after the surfactant treatment at or above the critical micelle concentration (CMC) of the surfactants due to their absorption into the membranes. The incorporation of the surfactants into the lipid membranes is also accompanied by partial dissolution of the lipids from the model SC lipid membranes as confirmed by Fourier-transform infrared (FT-IR) spectroscopy. Although the water sorption of pure SDS is much lower than that of pure SLES, the water sorption of SDS-treated membranes increases significantly similar to that of SLES-treated membranes. By combining QCM-D and FT-IR spectroscopy, we find that the chain conformational order and stiffness of the lipid membranes decrease after SDS treatment, resulting in the increased water sorption and diffusivity. In contrast, the conformational order and stiffness of the SLES-treated lipid membranes increase, suggesting that the increased water sorption capacity of SLES-treated lipid membranes is due to the hygroscopic nature of SLES.


Assuntos
Bicamadas Lipídicas/química , Tensoativos/química , Água/química , Ânions/química , Epiderme/química , Modelos Moleculares , Permeabilidade
3.
Langmuir ; 29(6): 1841-9, 2013 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-23330850

RESUMO

Colloidal particles spontaneously attach to the interface between two immiscible fluids to minimize the interfacial area between the two phases. The shape and wettability of particles have a strong influence on their configuration and interactions at fluid-fluid interfaces. In this study, we investigate the behavior of asymmetrically hydrophilic Janus cylinders (or double hydrophilic Janus cylinders with two different hydrophilic regions) trapped at an air-water interface. We find that these double hydrophilic Janus cylinders with aspect ratios of 0.9, 1.2, and 2.4 adopt both end-on and tilted configurations with respect to the interface. Our numerical calculations show that the coexistence of these configurations is a result of multiple energy minima present in the attachment energy profile that can be represented as a complex energy landscape. Double hydrophilic Janus cylinders with tilted orientations induce hexapolar interface deformation, which accounts for the pair interactions between the particles as well as the nondeterministic assembly behaviors of these particles at the interface.

4.
ACS Appl Mater Interfaces ; 4(12): 6426-31, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23198825

RESUMO

We demonstrate a method for producing thickness- and refractive index-tunable antireflection coatings utilizing a one-step spin coating procedure with silica nanoparticle solutions. Aging nanoparticle solutions under controlled pH and temperature induces aggregation, allowing precise control of the porosity and refractive index of the spin-processed coating. Coating thickness measurements as a function of solution aging time and temperature allow for determination of the activation energy of the reaction-limited aggregation process. We demonstrate optimization of the antireflection effect for a single-layer silica nanoparticle coating on glass, and suggest that the aggregation method may be generalized to various other nanoparticle-based assemblies.

5.
ACS Nano ; 5(6): 5078-87, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21557541

RESUMO

Thin films composed of nanoparticles exhibit synergistic properties, making them useful for numerous advanced applications. Nanoparticle thin films (NTFs), however, have a very low resistance to mechanical loading and abrasion, presenting a major bottleneck to their widespread use and commercialization. High-temperature sintering has been shown to improve the mechanical durability of NTFs on inorganic substrates; however, these high-temperature processes are not amenable to organic substrates. In this study, we demonstrate that the mechanical durability of TiO(2)/SiO(2) nanoparticle layer-by-layer (LbL) films on glass and polycarbonate substrates can be drastically improved using atomic layer deposition (ALD) at a relatively low temperature. The structure and physical properties of ALD-treated TiO(2)/SiO(2) nanoparticle LbL films are studied using spectroscopic ellipsometry, UV-vis spectroscopy, contact angle measurements, and nanoindentation. The composition of TiO(2)/SiO(2) LbL films as a function of ALD-cycle number is determined through solution ellipsometry, enabling the determination of the characteristic pore size of nanoparticle thin films. Mechanical durability is also investigated by abrasion tests, showing that the robustness of ALD-treated nanoparticle films is comparable to that of thermally calcined films. More importantly, ALD-treated nanoparticle films retain the original functionality of the TiO(2)/SiO(2) LbL films, such as superhydrophilicity and antireflection properties, demonstrating the utility of ALD as a reinforcement method for nanoparticle thin films.


Assuntos
Nanopartículas/química , Nanotecnologia/métodos , Teste de Materiais , Microscopia Eletrônica de Varredura/métodos , Cimento de Policarboxilato/química , Dióxido de Silício/química , Espectrofotometria/métodos , Espectrofotometria Ultravioleta/métodos , Estresse Mecânico , Propriedades de Superfície , Temperatura , Titânio/química
6.
ACS Appl Mater Interfaces ; 2(9): 2646-52, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20722418

RESUMO

A conductive and photocatalytic nanocomposite thin film comprising multiwalled carbon nanotubes (MWCNTs) and TiO2 nanoparticles is fabricated based on layer-by-layer (LbL) assembly in a nonpolar solvent, toluene. An amphiphilic surfactant, aerosol OT (AOT), is used to impart opposite surface charge onto MWCNTs and TiO2 in toluene. Our fabrication technique enables the incorporation of unoxidized MWCNTs into the nanocomposite thin films, and at the same time, provides a versatile method of fabricating conformal thin films over a large area. The physicochemical properties of MWCNT/TiO2 nanocomposite thin films, including composition and photocatalytic activity, can be varied by changing the concentration of AOT during assembly. The electrical properties of the nanocomposite film, specifically its sheet resistance and conductivity, can also be tuned through changing the assembly conditions. In addition, we demonstrate that the incorporation of MWCNTs within our films leads to a significant enhancement of the photocatalytic activity of TiO2. The conductivity and enhanced photocatalytic activity of MWCNT/TiO2 thin films make them promising for the generation of highly efficient dye-sensitized solar cells (DSSCs).


Assuntos
Materiais Biocompatíveis/química , Membranas Artificiais , Nanotubos de Carbono/química , Titânio/química , Materiais Biocompatíveis/efeitos da radiação , Catálise , Cristalização/métodos , Condutividade Elétrica , Eletroquímica/métodos , Luz , Teste de Materiais , Nanotubos de Carbono/efeitos da radiação , Fotoquímica/métodos , Propriedades de Superfície/efeitos da radiação , Titânio/efeitos da radiação
7.
Langmuir ; 26(12): 9974-80, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20392072

RESUMO

Layer-by-layer (LbL) assembly of charged species such as nanoparticles and polymers has been widely used to generate functional thin films with unique wetting, optical, catalytic, and biological properties. Although LbL assembly is a versatile tool for creating functional thin films on a variety of substrates, it is generally restricted to aqueous media, in which electrolytes ionize readily due to the large dielectric constant of water. LbL assembly of non-water-soluble materials would expand the range of film properties and functionalities that are attainable. In this study, we have successfully performed LbL deposition of charged particles in a nonpolar solvent, toluene. In toluene, carbon black (CB) and alumina acquired negative and positive surface charge, respectively, in the presence of a charge-inducing agent, Aerosol OT (AOT). The dependence of particle surface charge on the concentration of AOT in toluene was probed by electrophoretic mobility analysis. The two oppositely charged particles were sequentially deposited onto glass slides to form CB/Al(2)O(3) nanocomposite thin films. UV-vis spectroscopy, optical profilometry, and thermogravimetric analysis (TGA) were used to investigate the effect of assembly conditions (i.e., the concentration of AOT in each suspension) on the composition and growth behavior of CB/Al(2)O(3) nanocomposite films. Our results demonstrate that LbL assembly can indeed be performed using charged particles in nonpolar media. Such possibility will widen the library of materials that can be incorporated into thin films based on the LbL technique, which can ultimately lead to the generation of multifunctional nanocomposite thin films.


Assuntos
Nanocompostos/química , Polímeros , Tolueno , Nanopartículas , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...