Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1214539, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854071

RESUMO

Homeodomain-interacting protein kinases (Hipks) regulate cell proliferation, apoptosis, and tissue development. Overexpression of Hipk in Drosophila causes tumorigenic phenotypes in larval imaginal discs. We find that depletion of Salt-inducible kinases Sik2 or Sik3 can suppress Hipk-induced overgrowth. Furthermore, co-expression of constitutively active forms of Sik2 or Sik3 with Hipk caused significant tissue hyperplasia and tissue distortion, indicating that both Sik2 and Sik3 can synergize with Hipk to promote tumorous phenotypes, accompanied by elevated dMyc, Armadillo/ß-catenin, and the Yorkie target gene expanded. Larvae expressing these hyperplastic growths also display an extended larval phase, characteristic of other Drosophila tumour models. Examination of total protein levels from fly tissues showed that Hipk proteins were reduced when Siks were depleted through RNAi, suggesting that Siks may regulate Hipk protein stability and/or activity. Conversely, expression of constitutively active Siks with Hipk leads to increased Hipk protein levels. Furthermore, Hipk can interact with Sik2 and Sik3 by co-immunoprecipitation. Co-expression of both proteins leads to a mobility shift of Hipk protein, suggesting it is post-translationally modified. In summary, our research demonstrates a novel function of Siks in synergizing with Hipk to promote tumour growth.

2.
PLoS One ; 14(12): e0226856, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31891940

RESUMO

Drosophila has been instrumental as a model system in studying signal transduction and revealing molecular functions in development and human diseases. A point mutation in the Drosophila Janus kinase JAK (called hop) causes constitutive activation of the JAK/STAT pathway. We provide robust genetic evidence that the Homeodomain interacting protein kinase (Hipk) is required for endogenous JAK/STAT activity. Overexpression of Hipk can phenocopy the effects of overactive JAK/STAT mutations and lead to melanized tumors, and loss of Hipk can suppress the effects of hyperactive JAK/STAT. Further, the loss of the pathway effector Stat92E can suppress Hipk induced overgrowth. Interaction studies show that Hipk can physically interact with Stat92E and regulate Stat92E subcellular localization. Together our results show that Hipk is a novel factor required for effective JAK/STAT signaling.


Assuntos
Carcinogênese/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Janus Quinases/metabolismo , Proteínas Quinases/fisiologia , Fatores de Transcrição/metabolismo , Animais , Carcinogênese/genética , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Proteínas Quinases/genética
3.
Mol Cell Biol ; 33(15): 2854-64, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23716590

RESUMO

Translation is a fundamental step in gene expression, and translational control is exerted in many developmental processes. Most eukaryotic mRNAs are translated by a cap-dependent mechanism, which requires recognition of the 5'-cap structure of the mRNA by eukaryotic translation initiation factor 4E (eIF4E). eIF4E activity is controlled by eIF4E-binding proteins (4E-BPs), which by competing with eIF4G for eIF4E binding act as translational repressors. Here, we report the discovery of Mextli (Mxt), a novel Drosophila melanogaster 4E-BP that in sharp contrast to other 4E-BPs, has a modular structure, binds RNA, eIF3, and several eIF4Es, and promotes translation. Mxt is expressed at high levels in ovarian germ line stem cells (GSCs) and early-stage cystocytes, as is eIF4E-1, and we demonstrate the two proteins interact in these cells. Phenotypic analysis of mxt mutants indicates a role for Mxt in germ line stem cell (GSC) maintenance and in early embryogenesis. Our results support the idea that Mxt, like eIF4G, coordinates the assembly of translation initiation complexes, rendering Mxt the first example of evolutionary convergence of eIF4G function.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Biossíntese de Proteínas , Sequência de Aminoácidos , Animais , Proteínas de Drosophila/química , Drosophila melanogaster/química , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Oogênese
4.
Comp Funct Genomics ; 2012: 960420, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22745595

RESUMO

Insects are part of the earliest faunas that invaded terrestrial environments and are the first organisms that evolved controlled flight. Nowadays, insects are the most diverse animal group on the planet and comprise the majority of extant animal species described. Moreover, they have a huge impact in the biosphere as well as in all aspects of human life and economy; therefore understanding all aspects of insect biology is of great importance. In insects, as in all cells, translation is a fundamental process for gene expression. However, translation in insects has been mostly studied only in the model organism Drosophila melanogaster. We used all publicly available genomic sequences to investigate in insects the distribution of the genes encoding the cap-binding protein eIF4E, a protein that plays a crucial role in eukaryotic translation. We found that there is a diversity of multiple ortholog genes encoding eIF4E isoforms within the genus Drosophila. In striking contrast, insects outside this genus contain only a single eIF4E gene, related to D. melanogaster eIF4E-1. We also found that all insect species here analyzed contain only one Class II gene, termed 4E-HP. We discuss the possible evolutionary causes originating the multiplicity of eIF4E genes within the genus Drosophila.

5.
Proc Natl Acad Sci U S A ; 106(52): 22217-22, 2009 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-20018725

RESUMO

Translational control plays an important role in cell growth and tumorigenesis. Cap-dependent translation initiation of mammalian mRNAs with structured 5'UTRs requires the DExH-box protein, DHX29, in vitro. Here we show that DHX29 is important for translation in vivo. Down-regulation of DHX29 leads to impaired translation, resulting in disassembly of polysomes and accumulation of mRNA-free 80S monomers. DHX29 depletion also impedes cancer cell growth in culture and in xenografts. Thus, DHX29 is a bona fide translation initiation factor that potentially can be exploited as a target to inhibit cancer cell growth.


Assuntos
Proliferação de Células , Neoplasias/etiologia , Iniciação Traducional da Cadeia Peptídica/fisiologia , RNA Helicases/metabolismo , Regiões 5' não Traduzidas , Animais , Regulação para Baixo , Células HeLa , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , RNA Helicases/antagonistas & inibidores , RNA Helicases/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Transplante Heterólogo
6.
Methods Enzymol ; 429: 227-42, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17913626

RESUMO

Genetic tools enable insights into how translation controls development of a multicellular organism. Different genetic approaches offer the ability to manipulate the Drosophila genome in very precise ways, thereby allowing the investigation of how translation factors work in the context of a whole organism. We present here an overview of selected techniques used to identify genes involved in translation initiation, and quantitative methods to characterize phenotypes caused by mutations in genes encoding translation initiation or regulatory factors.


Assuntos
Drosophila melanogaster/genética , Iniciação Traducional da Cadeia Peptídica/fisiologia , Animais , DNA Nucleotidiltransferases/fisiologia , Elementos de DNA Transponíveis/fisiologia , Interferência de RNA , Recombinação Genética , Fatores de Transcrição/fisiologia
7.
Trends Biochem Sci ; 31(11): 607-10, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17015016

RESUMO

Recently, RNA helicase A (RHA) has been shown to facilitate translation of specific mRNAs by recognizing and binding to a complex structure at their 5' end known as the post-transcriptional control element. This implicates RHA, a member of the DEXD/H-box protein superfamily, in linking transcription and translation of a specific class of retroviral and cellular mRNAs. This exciting finding suggests a new mechanism for the regulation of the translation of specific transcripts.


Assuntos
Modelos Genéticos , Biossíntese de Proteínas , RNA Mensageiro/genética
8.
Genes Dev ; 19(16): 1840-3, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16055649

RESUMO

eIF4E, the mRNA 5' cap-binding protein, is regulated by its binding protein (4E-BP), a downstream target of phosphatidylinositol-3-OH kinase [PI(3)K] signaling. We show that Drosophila 4E-BP (d4E-BP) activity becomes critical for survival under dietary restriction and oxidative stress, and is linked to life span. The Drosophila forkhead transcription factor (dFOXO) activates d4E-BP transcription. We show that ectopic expression of d4E-BP in dFOXO-null flies restores oxidative stress resistance to control levels. Thus, d4E-BP is an important downstream effector of a dFOXO phenotype, and regulation of translation by eIF4E is vital during environmental stress.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Fator de Iniciação 4E em Eucariotos/metabolismo , Estresse Oxidativo/fisiologia , Inanição/metabolismo , Envelhecimento/genética , Envelhecimento/fisiologia , Animais , Animais Geneticamente Modificados , Drosophila melanogaster/genética , Longevidade/genética , Longevidade/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...