Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geroscience ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38862758

RESUMO

Few studies have systematically analyzed how old aging is. Gaining a more accurate knowledge about the natural history of aging could however have several payoffs. This knowledge could unveil lineages with dated genetic hardware, possibly maladapted to current environmental challenges, and also uncover "phylogenetic modules of aging," i.e., naturally evolved pathways associated with aging or longevity from a single ancestry, with translational interest for anti-aging therapies. Here, we approximated the natural history of the genetic hardware of aging for five model fungal and animal species. We propose a lower-bound estimate of the phylogenetic age of origination for their protein-encoding gene families and protein-protein interactions. Most aging-associated gene families are hundreds of million years old, older than the other gene families from these genomes. Moreover, we observed a form of punctuated evolution of the aging hardware in all species, as aging-associated families born at specific phylogenetic times accumulate preferentially in genomes. Most protein-protein interactions between aging genes are also old, and old aging-associated proteins showed a reduced potential to contribute to novel interactions associated with aging, suggesting that aging networks are at risk of losing in evolvability over long evolutionary periods. Finally, due to reshuffling events, aging networks presented a very limited phylogenetic structure that challenges the detection of "maladaptive" or "adaptative" phylogenetic modules of aging in present-day genomes.

2.
PLoS One ; 19(5): e0304064, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38787850

RESUMO

Asymmetric cell division is an important mechanism that generates cellular diversity during development. Not only do asymmetric cell divisions produce daughter cells of different fates, but many can also produce daughters of different sizes, which we refer to as Daughter Cell Size Asymmetry (DCSA). In Caenorhabditis elegans, apoptotic cells are frequently produced by asymmetric divisions that exhibit DCSA, where the smaller daughter dies. We focus here on the divisions of the Q.a and Q.p neuroblasts, which produce larger surviving cells and smaller apoptotic cells and divide with opposite polarity using both distinct and overlapping mechanisms. Several proteins regulate DCSA in these divisions. Previous studies showed that the PIG-1/MELK and TOE-2 proteins regulate DCSA in both the Q.a and Q.p divisions, and the non-muscle myosin NMY-2 regulates DCSA in the Q.a division but not the Q.p division. In this study, we examined endogenously tagged NMY-2, TOE-2, and PIG-1 reporters and characterized their distribution at the cortex during the Q.a and Q.p divisions. In both divisions, TOE-2 localized toward the side of the dividing cell that produced the smaller daughter, whereas PIG-1 localized toward the side that produced the larger daughter. As previously reported, NMY-2 localized to the side of Q.a that produced the smaller daughter and did not localize asymmetrically in Q.p. We used temperature-sensitive nmy-2 mutants to determine the role of nmy-2 in these divisions and were surprised to find that these mutants only displayed DCSA defects in the Q.p division. We generated double mutant combinations between the nmy-2 mutations and mutations in toe-2 and pig-1. Because previous studies indicate that DCSA defects result in the transformation of cells fated to die into their sister cells, the finding that the nmy-2 mutations did not significantly alter the Q.a and Q.p DCSA defects of toe-2 and pig-1 mutants but did alter the number of daughter cells produced by Q.a and Q.p suggests that nmy-2 plays a role in specifying the fates of the Q.a and Q.p that is independent of its role in DCSA.


Assuntos
Divisão Celular Assimétrica , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Tamanho Celular , Miosinas/metabolismo , Miosinas/genética , Proteínas Serina-Treonina Quinases
3.
Ageing Res Rev ; 89: 101982, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37321383

RESUMO

How, when, and why organisms age are fascinating issues that can only be fully addressed by adopting an evolutionary perspective. Consistently, the main evolutionary theories of ageing, namely the Mutation Accumulation theory, the Antagonistic Pleiotropy theory, and the Disposable Soma theory, have formulated stimulating hypotheses that structure current debates on both the proximal and ultimate causes of organismal ageing. However, all these theories leave a common area of biology relatively under-explored. The Mutation Accumulation theory and the Antagonistic Pleiotropy theory were developed under the traditional framework of population genetics, and therefore are logically centred on the ageing of individuals within a population. The Disposable Soma theory, based on principles of optimising physiology, mainly explains ageing within a species. Consequently, current leading evolutionary theories of ageing do not explicitly model the countless interspecific and ecological interactions, such as symbioses and host-microbiomes associations, increasingly recognized to shape organismal evolution across the Web of Life. Moreover, the development of network modelling supporting a deeper understanding on the molecular interactions associated with ageing within and between organisms is also bringing forward new questions regarding how and why molecular pathways associated with ageing evolved. Here, we take an evolutionary perspective to examine the effects of organismal interactions on ageing across different levels of biological organisation, and consider the impact of surrounding and nested systems on organismal ageing. We also apply this perspective to suggest open issues with potential to expand the standard evolutionary theories of ageing.


Assuntos
Envelhecimento , Evolução Biológica , Humanos , Envelhecimento/genética
4.
Mol Biol Evol ; 40(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36649176

RESUMO

Some viruses (e.g., human immunodeficiency virus 1 and severe acute respiratory syndrome coronavirus 2) have been experimentally proposed to accelerate features of human aging and of cellular senescence. These observations, along with evolutionary considerations on viral fitness, raised the more general puzzling hypothesis that, beyond documented sources in human genetics, aging in our species may also depend on virally encoded interactions distorting our aging to the benefits of diverse viruses. Accordingly, we designed systematic network-based analyses of the human and viral protein interactomes, which unraveled dozens of viruses encoding proteins experimentally demonstrated to interact with proteins from pathways associated with human aging, including cellular senescence. We further corroborated our predictions that specific viruses interfere with human aging using published experimental evidence and transcriptomic data; identifying influenza A virus (subtype H1N1) as a major candidate age distorter, notably through manipulation of cellular senescence. By providing original evidence that viruses may convergently contribute to the evolution of numerous age-associated pathways through co-evolution, our network-based and bipartite network-based methodologies support an ecosystemic study of aging, also searching for genetic causes of aging outside a focal aging species. Our findings, predicting age distorters and targets for anti-aging therapies among human viruses, could have fundamental and practical implications for evolutionary biology, aging study, virology, medicine, and demography.


Assuntos
Envelhecimento , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Humanos , Envelhecimento/genética , Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H1N1/genética , Proteínas Virais/genética , Coevolução Biológica , Senescência Celular
5.
Geroscience ; 45(2): 1059-1080, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36508078

RESUMO

The genetic roots of the diverse paces and shapes of ageing and of the large variations in longevity observed across the tree of life are poorly understood. Indeed, pathways associated with ageing/longevity are incompletely known, both in terms of their constitutive genes/proteins and of their molecular interactions. Moreover, there is limited overlap between the genes constituting these pathways across mammals. Yet, dedicated comparative analyses might still unravel evolutionarily conserved, important pathways associated with longevity or ageing. Here, we used an original strategy with a double evolutionary and systemic focus to analyse protein interactions associated with ageing or longevity during the evolution of five species of Opisthokonta. We ranked these proteins and interactions based on their evolutionary conservation and centrality in past and present protein-protein interaction (PPI) networks, providing a big systemic picture of the evolution of ageing and longevity pathways that identified which pathways emerged in which Opisthokonta lineages, were conserved, and/or central. We confirmed that longevity/ageing-associated proteins (LAPs), be they pro- or anti-longevity, are highly central in extant PPI, consistently with the antagonistic pleiotropy theory of ageing, and identified key antagonistic regulators of ageing/longevity, 52 of which with homologues in humans. While some highly central LAPs were evolutionarily conserved for over a billion years, we report a clear transition in the functionally important components of ageing/longevity within bilaterians. We also predicted 487 novel evolutionarily conserved LAPs in humans, 54% of which are more central than mTOR, and 138 of which are druggable, defining new potential targets for anti-ageing treatments in humans.


Assuntos
Envelhecimento , Longevidade , Humanos , Animais , Envelhecimento/genética , Longevidade/genética , Fungos , Mamíferos
6.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34662394

RESUMO

How, when, and why do organisms, their tissues, and their cells age remain challenging issues, although researchers have identified multiple mechanistic causes of aging, and three major evolutionary theories have been developed to unravel the ultimate causes of organismal aging. A central hypothesis of these theories is that the strength of natural selection decreases with age. However, empirical evidence on when, why, and how organisms age is phylogenetically limited, especially in natural populations. Here, we developed generic comparisons of gene co-expression networks that quantify and dissect the heterogeneity of gene co-expression in conspecific individuals from different age-classes to provide topological evidence about some mechanical and fundamental causes of organismal aging. We applied this approach to investigate the complexity of some proximal and ultimate causes of aging phenotypes in a natural population of the greater mouse-eared bat Myotis myotis, a remarkably long-lived species given its body size and metabolic rate, with available longitudinal blood transcriptomes. M. myotis gene co-expression networks become increasingly fragmented with age, suggesting an erosion of the strength of natural selection and a general dysregulation of gene co-expression in aging bats. However, selective pressures remain sufficiently strong to allow successive emergence of homogeneous age-specific gene co-expression patterns, for at least 7 years. Thus, older individuals from long-lived species appear to sit at an evolutionary crossroad: as they age, they experience both a decrease in the strength of natural selection and a targeted selection for very specific biological processes, further inviting to refine a central hypothesis in evolutionary aging theories.


Assuntos
Evolução Biológica , Seleção Genética , Transcriptoma
7.
Ageing Res Rev ; 70: 101375, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34082078

RESUMO

Genetic causes for ageing are traditionally investigated within a species. Yet, the lifecycles of many organisms intersect. Additional evolutionary and genetic causes of ageing, external to a focal species/organism, may thus be overlooked. Here, we introduce the phrase and concept of age-distorters and its evidence. Age-distorters carry ageing interfering genes, used to manipulate the biological age of other entities upon which the reproduction of age-distorters relies, e.g. age-distorters bias the reproduction/maintenance trade-offs of cells/organisms for their own evolutionary interests. Candidate age-distorters include viruses, parasites and symbionts, operating through specific, genetically encoded interferences resulting from co-evolution and arms race between manipulative non-kins and manipulable species. This interference results in organismal ageing when age-distorters prompt manipulated organisms to favor their reproduction at the expense of their maintenance, turning these hosts into expanded disposable soma. By relying on reproduction/maintenance trade-offs affecting disposable entities, which are left ageing to the reproductive benefit of other physically connected lineages with conflicting evolutionary interests, the concept of age-distorters expands the logic of the Disposable Soma theory beyond species with fixed germen/soma distinctions. Moreover, acknowledging age-distorters as external sources of mutation accumulation and antagonistic pleiotropic genes expands the scope of the mutation accumulation and of the antagonistic pleiotropy theories.


Assuntos
Evolução Biológica , Reprodução
8.
Front Cell Dev Biol ; 8: 536389, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072737

RESUMO

Genetically regulated cell death (RCD) occurs in all domains of life. In eukaryotes, the evolutionary origin of the mitochondrion and of certain forms of RCD, in particular apoptosis, are thought to coincide, suggesting a central general role for mitochondria in cellular suicide. We tested this mitochondrial centrality hypothesis across a dataset of 67 species of protists, presenting 5 classes of mitochondrial phenotypes, including functional mitochondria, metabolically diversified mitochondria, functionally reduced mitochondria (Mitochondrion Related Organelle or MRO) and even complete absence of mitochondria. We investigated the distribution of genes associated with various forms of RCD. No homologs for described mammalian regulators of regulated necrosis could be identified in our set of 67 unicellular taxa. Protists with MRO and the secondarily a mitochondriate Monocercomonoides exilis display heterogeneous reductions of apoptosis gene sets with respect to typical mitochondriate protists. Remarkably, despite the total lack of mitochondria in M. exilis, apoptosis-associated genes could still be identified. These same species of protists with MRO and M. exilis harbored non-reduced autophagic cell death gene sets. Moreover, transiently multicellular protist taxa appeared enriched in apoptotic and autophagy associated genes compared to free-living protists. This analysis suggests that genes associated with apoptosis in animals and the presence of the mitochondria are significant yet non-essential biological components for RCD in protists. More generally, our results support the hypothesis of a selection for RCD, including both apoptosis and autophagy, as a developmental mechanism linked to multicellularity.

9.
Ageing Res Rev ; 60: 101064, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32268207

RESUMO

Life has persisted for about 3.5 billion years (Gy) despite fluctuating environmental pressures and the aging and mortality of individuals. The disposable soma theory (DST) notoriously contributes to explain this persistence for lineages with a clear soma/germen distinction. Beyond such lineages however, the phylogenetic scope of application of the DST is less obvious. Typically, the DST is not expected to explain the survival of microbial species that comprise single-celled organisms apparently lacking a germen/soma distinction. Here, we present an evolutionary argument that generalizes the explanatory scope of DST to the entire microbial world and provides a novel characterization of the deep molecular and evolutionary roots supporting this expanded disposable soma theory of aging. Specifically, we argue that the germen/soma distinction arose early in evolution and identify DNA semi-conservative replication as a critical process through which two forms of rejuvenation could have evolved in the first microbes. Our hypothesis has fundamental and practical implications. First, whereas unicellular organisms were long thought of as potentially immortal, we suggest instead that all unicellular individuals (prokaryotes or protists alike) are very likely to age, either replicatively or physiologically, or both. Second, our theory introduces a profound reconsideration of microbial individuality, whereby, all microbial individuals, as seen by natural selection, present an obligate transient germen/soma distinction during their life cycles. Third, our work promotes the study of cellular division in prokaryotes and in protist mitosis to illuminate the evolutionary origin of the soma and germen division, traditionally studied in animals. These ideas set the stage for progress in the evolutionary theory of aging from a heretofore overlooked microbial perspective.


Assuntos
Envelhecimento , Evolução Biológica , Animais , Replicação do DNA , Humanos , Filogenia
10.
Development ; 145(24)2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30504124

RESUMO

Signaling that instructs the migration of neurons needs to be tightly regulated to ensure precise positioning of neurons and subsequent wiring of the neuronal circuits. Wnt-Frizzled signaling controls neuronal migration in metazoans, in addition to many other aspects of neural development. We show that Caenorhabditis elegans VANG-1, a membrane protein that acts in the planar cell polarity (PCP) pathway, antagonizes Wnt signaling by facilitating endocytosis of the Frizzled receptors. Mutations of vang-1 suppress migration defects of multiple classes of neurons in the Frizzled mutants, and overexpression of vang-1 causes neuronal migration defects similar to those of the Frizzled mutants. Our genetic experiments suggest that VANG-1 facilitates Frizzled endocytosis through ß-arrestin2. Co-immunoprecipitation experiments indicate that Frizzled proteins and VANG-1 form a complex, and this physical interaction requires the Frizzled cysteine-rich domain. Our work reveals a novel mechanism mediated by the PCP protein VANG-1 that downregulates Wnt signaling through Frizzled endocytosis.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Polaridade Celular , Endocitose , Receptores Frizzled/metabolismo , Fosfoproteínas/metabolismo , Via de Sinalização Wnt , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Movimento Celular , Larva/citologia , Complexos Multiproteicos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética
11.
PLoS One ; 13(4): e0195855, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29668718

RESUMO

C. elegans cell divisions that produce an apoptotic daughter cell exhibit Daughter Cell Size Asymmetry (DCSA), producing a larger surviving daughter cell and a smaller daughter cell fated to die. Genetic screens for mutants with defects in apoptosis identified several genes that are also required for the ability of these divisions to produce daughter cells that differ in size. One of these genes, ham-1, encodes a putative transcription factor that regulates a subset of the asymmetric cell divisions that produce an apoptotic daughter cell. In a survey of C. elegans divisions, we found that ham-1 mutations affect primarily anterior/posterior divisions that produce a small anterior daughter cell. The affected divisions include those that generate an apoptotic cell as well as those that generate two surviving cells. Our findings suggest that HAM-1 primarily promotes DCSA in a certain class of asymmetric divisions.


Assuntos
Divisão Celular Assimétrica/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Divisão Celular/genética , Proteínas do Tecido Nervoso/genética , Animais , Apoptose/genética , Linhagem da Célula/genética , Tamanho Celular , Sobrevivência Celular/genética , Modelos Biológicos , Mutação , Neurônios/metabolismo , Fenótipo
12.
Results Probl Cell Differ ; 61: 141-163, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28409303

RESUMO

Apoptosis is a form of programmed cell death used by metazoans to eliminate abnormal cells, control cell number, and shape the development of organs. The use of the nematode Caenorhabditis elegans as a model for the study of apoptosis has led to important insights into how cells die and how their corpses are removed. Eighty percent of these apoptotic cell deaths occur during nervous system development and in daughters of neuroblasts that divide asymmetrically. Pioneering work defined a conserved apoptosis pathway that is initiated in C. elegans by the BH3-only protein EGL-1 and that leads to the activation of the caspase CED-3. While the execution of the apoptotic fate is well understood, much less is known about the mechanisms that specify the apoptotic fate of particular cells. In some cells fated to die, this regulation occurs at the level of the egl-1 gene transcription, and investigators have identified several lineage-specific transcription factors that both positively and negatively regulate egl-1. In this review, we focus on a second set of molecules that appear to influence apoptosis by controlling the position of the cleavage plane in divisions that produce apoptotic cells.


Assuntos
Apoptose/fisiologia , Divisão Celular Assimétrica/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Animais
13.
Genetics ; 198(1): 229-47, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25053664

RESUMO

Cytohesins are Arf guanine nucleotide exchange factors (GEFs) that regulate membrane trafficking and actin cytoskeletal dynamics. We report here that GRP-1, the sole Caenorhabditis elegans cytohesin, controls the asymmetric divisions of certain neuroblasts that divide to produce a larger neuronal precursor or neuron and a smaller cell fated to die. In the Q neuroblast lineage, loss of GRP-1 led to the production of daughter cells that are more similar in size and to the transformation of the normally apoptotic daughter into its sister, resulting in the production of extra neurons. Genetic interactions suggest that GRP-1 functions with the previously described Arf GAP CNT-2 and two other Arf GEFs, EFA-6 and BRIS-1, to regulate the activity of Arf GTPases. In agreement with this model, we show that GRP-1's GEF activity, mediated by its SEC7 domain, is necessary for the posterior Q cell (Q.p) neuroblast division and that both GRP-1 and CNT-2 function in the Q.posterior Q daughter cell (Q.p) to promote its asymmetry. Although functional GFP-tagged GRP-1 proteins localized to the nucleus, the extra cell defects were rescued by targeting the Arf GEF activity of GRP-1 to the plasma membrane, suggesting that GRP-1 acts at the plasma membrane. The detection of endogenous GRP-1 protein at cytokinesis remnants, or midbodies, is consistent with GRP-1 functioning at the plasma membrane and perhaps at the cytokinetic furrow to promote the asymmetry of the divisions that require its function.


Assuntos
Apoptose , Divisão Celular Assimétrica , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células-Tronco Neurais/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Citocinese , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Células-Tronco Neurais/fisiologia , Ligação Proteica , Estrutura Terciária de Proteína
14.
Genetics ; 193(3): 897-909, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23267054

RESUMO

Asymmetric cell divisions produce daughter cells with distinct sizes and fates, a process important for generating cell diversity during development. Many Caenorhabditis elegans neuroblasts, including the posterior daughter of the Q cell (Q.p), divide to produce a larger neuron or neuronal precursor and a smaller cell that dies. These size and fate asymmetries require the gene pig-1, which encodes a protein orthologous to vertebrate MELK and belongs to the AMPK-related family of kinases. Members of this family can be phosphorylated and activated by the tumor suppressor kinase LKB1, a conserved polarity regulator of epithelial cells and neurons. In this study, we present evidence that the C. elegans orthologs of LKB1 (PAR-4) and its partners STRAD (STRD-1) and MO25 (MOP-25.2) regulate the asymmetry of the Q.p neuroblast division. We show that PAR-4 and STRD-1 act in the Q lineage and function genetically in the same pathway as PIG-1. A conserved threonine residue (T169) in the PIG-1 activation loop is essential for PIG-1 activity, consistent with the model that PAR-4 (or another PAR-4-regulated kinase) phosphorylates and activates PIG-1. We also demonstrate that PIG-1 localizes to centrosomes during cell divisions of the Q lineage, but this localization does not depend on T169 or PAR-4. We propose that a PAR-4-STRD-1 complex stimulates PIG-1 kinase activity to promote asymmetric neuroblast divisions and the generation of daughter cells with distinct fates. Changes in cell fate may underlie many of the abnormal behaviors exhibited by cells after loss of PAR-4 or LKB1.


Assuntos
Divisão Celular Assimétrica/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Células-Tronco Neurais/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Domínio Catalítico , Linhagem da Célula , Centrossomo/metabolismo , Células-Tronco Neurais/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética
15.
Development ; 138(20): 4475-85, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21937599

RESUMO

Neurons require precise targeting of their axons to form a connected network and a functional nervous system. Although many guidance receptors have been identified, much less is known about how these receptors signal to direct growth cone migration. We used Caenorhabditis elegans motoneurons to study growth cone directional migration in response to a repellent UNC-6 (netrin homolog) guidance cue. The evolutionarily conserved kinase MIG-15 [homolog of Nck-interacting kinase (NIK)] regulates motoneuron UNC-6-dependent repulsion through unknown mechanisms. Using genetics and live imaging techniques, we show that motoneuron commissural axon morphology defects in mig-15 mutants result from impaired growth cone motility and subsequent failure to migrate across longitudinal obstacles or retract extra processes. To identify new genes acting with mig-15, we screened for genetic enhancers of the mig-15 commissural phenotype and identified the ezrin/radixin/moesin ortholog ERM-1, the kinesin-1 motor UNC-116 and the actin regulator WVE-1 complex. Genetic analysis indicates that mig-15 and erm-1 act in the same genetic pathway to regulate growth cone migration and that this pathway functions in parallel to the UNC-116/WVE-1 pathway. Further, time-lapse imaging of growth cones in mutants suggests that UNC-116 might be required to stimulate protrusive activity at the leading edge, whereas MIG-15 and ERM-1 maintain low activity at the rear edge. Together, these results support a model in which the MIG-15 kinase and the UNC-116-WVE-1 complex act on opposite sides of the growth cone to promote robust directional migration.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Cones de Crescimento/metabolismo , Cinesinas/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Movimento Celular/fisiologia , Polaridade Celular , Proteínas do Citoesqueleto/genética , Genes de Helmintos , Cinesinas/genética , Neurônios Motores/metabolismo , Mutação , Neurogênese/genética , Neurogênese/fisiologia , Interferência de RNA
16.
Curr Biol ; 21(11): 948-54, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21596567

RESUMO

During development, all cells make the decision to live or die. Although the molecular mechanisms that execute the apoptotic program are well defined, less is known about how cells decide whether to live or die. In C. elegans, this decision is linked to how cells divide asymmetrically [1, 2]. Several classes of molecules are known to regulate asymmetric cell divisions in metazoans, yet these molecules do not appear to control C. elegans divisions that produce apoptotic cells [3]. We identified CNT-2, an Arf GTPase-activating protein (GAP) of the AGAP family, as a novel regulator of this type of neuroblast division. Loss of CNT-2 alters daughter cell size and causes the apoptotic cell to adopt the fate of its sister cell, resulting in extra neurons. CNT-2's Arf GAP activity is essential for its function in these divisions. The N terminus of CNT-2, which contains a GTPase-like domain that defines the AGAP class of Arf GAPs, negatively regulates CNT-2's function. We provide evidence that CNT-2 regulates receptor-mediated endocytosis and consider the implications of its role in asymmetric cell divisions.


Assuntos
Apoptose , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/citologia , Divisão Celular/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Fator 1 de Ribosilação do ADP/fisiologia , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/fisiologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Polaridade Celular , Endocitose/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo
17.
FEBS Lett ; 581(5): 831-6, 2007 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-17292359

RESUMO

P-cadherin expression is restricted to the basal layer of stratified epithelia including that of the mammary gland. Although evidence for an important role of P-cadherin in mammary morphogenesis and tumorigenesis is increasing, the mechanisms that regulate its expression are poorly understood. We show that in basal mammary epithelial cells, beta-catenin is associated with the P-cadherin promoter and activates its expression independently of LEF/TCF in a cell-type specific manner. Down-regulation of endogenous beta-catenin levels by RNA interference technique inhibited P-cadherin promoter activity. In vivo, in skin and mammary gland of mutant mice, activation of beta-catenin signalling correlates with up-regulation of P-cadherin expression. These data suggest that beta-catenin-dependent modulation of P-cadherin expression can contribute to the establishment of the basal phenotype.


Assuntos
Caderinas/genética , Glândulas Mamárias Animais/metabolismo , beta Catenina/metabolismo , Animais , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , Núcleo Celular/metabolismo , Primers do DNA/genética , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Glândulas Mamárias Animais/citologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Regiões Promotoras Genéticas , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Pele/metabolismo , Fatores de Transcrição TCF/metabolismo , beta Catenina/antagonistas & inibidores , beta Catenina/deficiência , beta Catenina/genética
18.
J Soc Biol ; 200(2): 193-8, 2006.
Artigo em Francês | MEDLINE | ID: mdl-17151555

RESUMO

Mammary epithelium is organized as a bilayer with a layer of luminal secretory cells and a layer of basal myoepithelial cells. To dissect the specific functions of these two major compartments of the mammary epithelium in mammary morphogenesis we have used genetically modified mice carrying transgenes or conditional alleles whose expression or ablation were cell-type specific. Basal cells are located in close proximity to mammary stroma and directly interact with the extracellular matrix (basement membrane) during all their lifespan. On the contrary, luminal secretory cells during early stages of the postnatal mammary development have only limited contacts with basement membrane and become exposed to the extracellular matrix only during late developmental stages at the end of pregnancy and in lactation. Consistently perturbation of beta1-integrin function specifically in the luminal layer of the mammary epithelium, did not interfere with mammary morphogenesis until the second part of pregnancy but led to impaired secretory differentiation and lactation. On the contrary, ablation of beta1-integrin gene in the basal mammary epithelial cells resulted in a more precocious phenotype: disorganized branching in young virgin animals and a complete arrest of lobuloalveolar development. Further, a constitutive activation of beta-catenin signaling due to expression of N-terminally truncated (stabilized) beta-catenin specifically in basal myoepithelial cells resulted in accelerated differentiation of luminal secretory cells in pregnancy, precocious postlactational involution, increased angiogenesis and development of mammary tumors. Altogether these data suggest that basal mammary epithelial cells can affect growth and differentiation of luminal secretory cells, have an impact on the epithelium-stroma relationships and, thereby, play an important role in the process of mammary morphogenesis and differentiation.


Assuntos
Células Epiteliais/fisiologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Células Musculares/fisiologia , Alelos , Animais , Diferenciação Celular , Células Epiteliais/classificação , Células Epiteliais/metabolismo , Matriz Extracelular/fisiologia , Feminino , Regulação da Expressão Gênica , Homeostase , Integrina beta1/fisiologia , Lactação , Glândulas Mamárias Animais/citologia , Camundongos , Camundongos Transgênicos , Gravidez , Transdução de Sinais , Células Estromais/citologia , Proteínas Wnt/fisiologia , beta Catenina/fisiologia
19.
Dev Biol ; 293(2): 414-25, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16545360

RESUMO

A mouse mammary epithelial cell line with morphogenetic properties in vivo, Comma-Dbeta, was used to isolate and to characterize mammary progenitor cells. We found that a homogeneous cell population expressing high surface levels of stem cell antigen 1 (Sca-1) was able to give rise in vivo to ductal and alveolar structures comprising luminal secretory and basal myoepithelial cells. Unlike the Sca-1(high), the Sca-1(neg/low) cell population displayed a reduced morphogenetic potential. The Sca-1(high) cells presented moderate CD24, high CD44 and alpha6 integrin surface levels, expressed basal cell markers p63, keratins 5 and 14, but no luminal and myoepithelial lineage markers. In culture, the Sca-1(high) cells generated identical daughter cells that retained their in vivo developmental potential, indicating that these cells were maintained by self-renewal. Plated at clonogenic density in Matrigel, Sca-1(high) cells formed spheroids that included luminal and myoepithelial cells. Thus, the isolated Sca-1(high) basal cells possess several features of stem/progenitor cells, including specific markers, self-renewal capacity, and the ability to generate the two major mammary lineages, luminal and myoepithelial. These data provide evidence for the existence of basal-type mouse mammary progenitors able to participate in the morphogenetic processes characteristic of mammary gland development.


Assuntos
Células Epiteliais/citologia , Glândulas Mamárias Animais/citologia , Células-Tronco/citologia , Animais , Antígenos Ly/metabolismo , Diferenciação Celular , Linhagem Celular , Separação Celular , Células Epiteliais/imunologia , Feminino , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Fenótipo , Células-Tronco/imunologia
20.
J Mammary Gland Biol Neoplasia ; 10(3): 211-9, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16807801

RESUMO

Until recently, myoepithelial cells-the second major cell population in the mammary epithelium-were not considered to play an important role in the morphogenetic events during gland development. Mouse mutants with changes in the gene expression pattern characteristic of the basal myoepithelial cell layer have been generated and used to show that these cells influence the proliferation, survival and differentiation of luminal cells, modulate stromal-epithelial interactions and actively participate in mammary morphogenesis. Various cellular and molecular mechanisms may underlie the observed phenotypes. These include an unbalanced expression of matrix degrading metalloproteinases (MMPs) and their inhibitors, leading to changes in the composition and organization of the (extracellular matrix) ECM, the production of soluble growth factors affecting stromal and epithelial cell growth and differentiation and direct signaling through cell-cell contacts between the myoepithelial and luminal cell layers.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Animais , Epitélio/patologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/patologia , Camundongos , Camundongos Transgênicos/genética , Morfogênese/fisiologia , Células Musculares/citologia , Células Musculares/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...