Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Antimicrob Agents ; 63(6): 107166, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570017

RESUMO

The demand for antibiofilm molecules has increased over several years due to their potential to fight biofilm-associated infections, such as those including the interkingdom Staphylococcus aureus-Candida albicans occurring in clinical settings worldwide. Recently, we identified a pentacyclic triterpenoid compound, betulinic acid, from invasive macrophytes, with interesting antibiofilm properties. The aim of the present study was to provide insights into the mechanism of action of betulinic acid against the clinically relevant bi-species S. aureus-C. albicans biofilms. Microscopy examinations, flow cytometry and crystal violet assays confirmed that betulinic acid was effective at damaging mature S. aureus-C. albicans biofilms or inhibiting their formation, reducing biofilm biomass by 70% on average and without microbicidal activity. The results suggested an action of betulinic acid on cell membranes, inducing changes in properties such as composition, hydrophobicity and fluidity as observed in C. albicans, which may hinder the early adhesion step, biofilm growth and the physical interactions of both microbial species. Further results of real-time polymerase chain reaction argued in favour of a reduction in S. aureus-C. albicans physical interaction due to betulinic acid by the modulation of biofilm-related gene expression, as observed in early stages of biofilm formation. This study revealed the potential of betulinic acid as a candidate agent for the prevention and treatment of S. aureus-C. albicans biofilm-related infections.


Assuntos
Ácido Betulínico , Biofilmes , Candida albicans , Triterpenos Pentacíclicos , Staphylococcus aureus , Triterpenos , Biofilmes/efeitos dos fármacos , Triterpenos Pentacíclicos/farmacologia , Candida albicans/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Triterpenos/farmacologia , Triterpenos/química , Humanos , Citometria de Fluxo , Testes de Sensibilidade Microbiana , Membrana Celular/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Microscopia
2.
Mycoses ; 67(3): e13704, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429226

RESUMO

BACKGROUND: Meyerozyma guilliermondii is a yeast species responsible for invasive fungal infections. It has high minimum inhibitory concentrations (MICs) to echinocandins, the first-line treatment of candidemia. In this context, azole antifungal agents are frequently used. However, in recent years, a number of azole-resistant strains have been described. Their mechanisms of resistance are currently poorly studied. OBJECTIVE: The aim of this study was consequently to understand the mechanisms of azole resistance in several clinical isolates of M. guilliermondii. METHODS: Ten isolates of M. guilliermondii and the ATCC 6260 reference strain were studied. MICs of azoles were determined first. Whole genome sequencing of the isolates was then carried out and the mutations identified in ERG11 were expressed in a CTG clade yeast model (C. lusitaniae). RNA expression of ERG11, MDR1 and CDR1 was evaluated by quantitative PCR. A phylogenic analysis was developed and performed on M. guilliermondii isolates. Lastly, in vitro experiments on fitness cost and virulence were carried out. RESULTS: Of the ten isolates tested, three showed pan-azole resistance. A combination of F126L and L505F mutations in Erg11 was highlighted in these three isolates. Interestingly, a combination of these two mutations was necessary to confer azole resistance. An overexpression of the Cdr1 efflux pump was also evidenced in one strain. Moreover, the three pan-azole-resistant isolates were shown to be genetically related and not associated with a fitness cost or a lower virulence, suggesting a possible clonal transmission. CONCLUSION: In conclusion, this study identified an original combination of ERG11 mutations responsible for pan-azole-resistance in M. guilliermondii. Moreover, we proposed a new MLST analysis for M. guilliermondii that identified possible clonal transmission of pan-azole-resistant strains. Future studies are needed to investigate the distribution of this clone in hospital environment and should lead to the reconsideration of the treatment for this species.


Assuntos
Azóis , Farmacorresistência Fúngica , Saccharomycetales , Humanos , Azóis/farmacologia , Tipagem de Sequências Multilocus , Farmacorresistência Fúngica/genética , Antifúngicos/farmacologia , Mutação , Testes de Sensibilidade Microbiana , Fluconazol/farmacologia
3.
Int J Pharm ; 646: 123502, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37827392

RESUMO

The increasing prevalence of non-healing infected wounds has become a serious concern in the clinical practice, being associated to population aging and to the rising prevalence of several chronic conditions such as diabetes. Herein, the evaluation of the bactericidal and antibiofilm effects of the natural antiseptic terpenes thymol and farnesol standing alone or in combination with the standard care antiseptic chlorhexidine was carried out both in vitro and in vivo. The in vitro combinatorial treatment of chlorhexidine associated with those terpenes against Staphylococcus aureus in its planktonic and sessile forms demonstrated a superior antibacterial activity than that of chlorhexidine alone. Real-time in vivo monitoring of infection progression and antimicrobial treatment outcomes were evaluated using the bioluminescent S. aureus strain Xen36. In vivo studies on infected wound splinting murine models corroborated the superior bactericidal effects of the combinatorial treatments here proposed. Moreover, the encapsulation of thymol in electrospun Eudragit® S100 (i.e., a synthetic anionic copolymer of methacrylic acid and ethyl acrylate)-based wound dressings was also carried out in order to design efficient antimicrobial wound dressings.


Assuntos
Anti-Infecciosos Locais , Anti-Infecciosos , Infecção dos Ferimentos , Humanos , Animais , Camundongos , Clorexidina/farmacologia , Staphylococcus aureus , Timol/farmacologia , Anti-Infecciosos Locais/farmacologia , Antibacterianos , Anti-Infecciosos/farmacologia , Infecção dos Ferimentos/tratamento farmacológico
4.
Int J Pharm X ; 5: 100178, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36970713

RESUMO

The potential gain in efficacy of pulmonary administration over IV administration of some antibiotics such as ciprofloxacin (CIP) may be limited by the short residence time of the drug at the site of infection after nebulization. Complexation of CIP with copper reduced its apparent permeability in vitro through a Calu-3 cell monolayer and greatly increased its pulmonary residence time after aerosolisation in healthy rats. Chronic P. aeruginosa lung infections in cystic fibrosis patients result in airway and alveolar inflammation that may increase the permeability of inhaled antibiotics and alter their fate in the lung after inhalation compared to what was seen in healthy conditions. The objective of this study was to compare the pharmacokinetics and efficacy of CIP-Cu2+ complex-loaded microparticles administered by pulmonary route with a CIP solution administered by IV to model rats with chronic lung infection. After a single pulmonary administration of microparticles loaded with CIP-Cu2+ complex, pulmonary exposure to CIP was increased 2077-fold compared to IV administration of CIP solution. This single lung administration significantly reduced the lung burden of P. aeruginosa expressed as CFU/lung measured 24 h after administration by 10-fold while IV administration of the same dose of CIP was ineffective compared to the untreated control. This better efficacy of inhaled microparticles loaded with CIP-Cu2+ complex compared with CIP solution can be attributed to the higher pulmonary exposure to CIP obtained with inhaled CIP-Cu2+ complex-loaded microparticles than that obtained with IV solution.

5.
Int J Pharm ; 635: 122732, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36803926

RESUMO

Compared to parenteral administration of colistin, its direct pulmonary administration can maximize lung drug deposition while reducing systemic adverse side effects and derived nephrotoxicity. Current pulmonary administration of colistin is carried out by the aerosolization of a prodrug, colistin methanesulfonate (CMS), which must be hydrolized to colistin in the lung to produce its bactericidal effect. However, this conversion is slow relative to the rate of absorption of CMS, and thus only 1.4 % (w/w) of the CMS dose is converted to colistin in the lungs of patients receiving inhaled CMS. We synthesized several aerosolizable nanoparticle carriers loaded with colistin using different techniques and selected particles with sufficient drug loading and adequate aerodynamic behavior to efficiently deliver colistin to the entire lung. Specifically, we carried out (i) the encapsulation of colistin by single emulsion-solvent evaporation with immiscible solvents using polylactic-co-glycolic (PLGA) nanoparticles; (ii) its encapsulation using nanoprecipitation with miscible solvents using poly(lactide-co-glycolide)-block-poly(ethylene glycol) as encapsulating matrix; (iii) colistin nanoprecipitation using the antisolvent precipitation method and its subsequent encapsulation within PLGA nanoparticles; and (iv) colistin encapsulation within PLGA-based microparticles using electrospraying. Nanoprecipitation of pure colistin using antisolvent precipitation showed the highest drug loading (55.0 ± 4.8 wt%) and spontaneously formed aggregates with adequate aerodynamic diameter (between 3 and 5 µm) to potentially reach the entire lung. These nanoparticles were able to completely eradicate Pseudomonas aeruginosa in an in vitro lung biofilm model at 10 µg/mL (MBC). This formulation could be a promising alternative for the treatment of pulmonary infections improving lung deposition and, therefore, the efficacy of aerosolized antibiotics.


Assuntos
Infecções Bacterianas , Nanopartículas , Infecções Respiratórias , Humanos , Colistina , Antibacterianos , Infecções Respiratórias/tratamento farmacológico , Infecções Bacterianas/tratamento farmacológico , Solventes , Tamanho da Partícula , Portadores de Fármacos/uso terapêutico
6.
Pharmaceutics ; 14(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35336015

RESUMO

Pulmonary mold infections are life-threatening diseases with high morbi-mortalities. Treatment is based on systemic antifungal agents belonging to the families of polyenes (amphotericin B) and triazoles. Despite this treatment, mortality remains high and the doses of systemic antifungals cannot be increased as they often lead to toxicity. The pulmonary aerosolization of antifungal agents can theoretically increase their concentration at the infectious site, which could improve their efficacy while limiting their systemic exposure and toxicity. However, clinical experience is poor and thus inhaled agent utilization remains unclear in term of indications, drugs, and devices. This comprehensive literature review aims to describe the pharmacokinetic behavior and the efficacy of inhaled antifungal drugs as prophylaxes and curative treatments both in animal models and humans.

7.
J Fungi (Basel) ; 8(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35205875

RESUMO

The aim of this study was to evaluate the effect of the combination of amphotericin B (AmB) and various non-ionic surfactants on the anti-Mucorales activity of AmB, the toxicity of the combination on eukaryotic cells and the modification of AmB aggregation states. Checkerboards were performed on five genera of Mucorales (12 strains) using several combinations of different surfactants and AmB. These data were analyzed by an Emax model. The effect of surfactants on the cytotoxic activity of AmB was then evaluated for red blood cells and two eukaryotic cell lines by absorbance and propidium iodide internalization. Finally, the effect of polyethylene glycol (15)-hydroxystearate (PEG15HS) on the aggregation states of AmB was evaluated by UV-visible spectrometry. PEG15HS increased the efficacy of AmB on four of the five Mucorales genera, and MICs of AmB were decreased up to 68-fold for L. ramosa. PEG15HS was the only surfactant to not increase the cytotoxic activity of AmB. Finally, the analysis of AmB aggregation states showed that the increased efficacy of AmB and the absence of toxicity are related to an increase in monomeric and polyaggregated forms of AmB at the detriment of the dimeric form. In conclusion, PEG15HS increases the in vitro efficacy of AmB against Mucorales at low concentration, without increasing its toxicity; this combination could therefore be evaluated in the treatment of mucormycosis.

8.
Pharmaceutics ; 13(11)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34834268

RESUMO

Resistance to colistin, one of the antibiotics of last resort against multidrug-resistant Gram-negative bacteria, is increasingly reported. Notably, MCR plasmids discovered in 2015 have now been reported worldwide in humans. To keep this antibiotic of last resort efficient, a way to tackle this mechanism seems essential. Terpene alcohols such as farnesol have been shown to improve the efficacy of some antibiotics. However, their high lipophilicity makes them difficult to use. This problem can be solved by encapsulating them in water-dispersible lipid nanoparticles (LNPs). The aim of this study was to discover, using checkerboard tests and time-kill curve experiments, an association between colistin and farnesol or geraniol loaded in LNPs, which would improve the efficacy of colistin against E. coli and, in particular, MCR-1 transconjugants. Then, the effect of the combination on E. coli inner membrane permeabilisation was evaluated using propidium iodide (PI) uptake and compared to human red blood cells plasma membrane permeabilisation. Both terpene alcohols were able to restore the susceptibility of E. coli J53 MCR-1 to colistin with the same efficacy (Emax = 16, i.e., colistin MIC was decreased from 8 to 0.5 mg/L). However, with an EC50 of 2.69 mg/L, farnesol was more potent than geraniol (EC50 = 39.49 mg/L). Time-kill studies showed a bactericidal effect on MCR-1 transconjugant 6 h after incubation, with no regrowth up to 30 h in the presence of 1 mg/L colistin (1/8 MIC) and 60 mg/L or 200 mg/L farnesol or geraniol, respectively. Colistin alone was more potent in increasing PI uptake rate in the susceptible strain (EC50 = 0.86 ± 0.08 mg/L) than in the MCR-1 one (EC50 = 7.38 ± 0.85 mg/L). Against the MCR-1 strain, farnesol-loaded LNP at 60 mg/L enhanced the colistin-induced inner membrane permeabilization effect up to 5-fold and also increased its potency as shown by the decrease in its EC50 from 7.38 ± 0.85 mg/L to 2.69 ± 0.25 mg/L. Importantly, no hemolysis was observed for LNPs loaded with farnesol or geraniol, alone or in combination with colistin, at the concentrations showing the maximum decrease in colistin MICs. The results presented here indicate that farnesol-loaded LNPs should be studied as combination therapy with colistin to prevent the development of resistance to this antibiotic of last resort.

9.
Pharmaceutics ; 12(6)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560289

RESUMO

To assess the difference in the fate of the antibiotic colistin (COLI) after its pulmonary delivery as a powder or a solution, we developed a COLI powder and evaluated the COLI pharmacokinetic properties in rats after pulmonary administration of the powder or the solution. The amorphous COLI powder prepared by spray drying was characterized by a mass median aerodynamic diameter and fine particle fraction of 2.68 ± 0.07 µm and 59.5 ± 5.4%, respectively, when emitted from a Handihaler®. After intratracheal administration, the average pulmonary epithelial lining fluid (ELF): plasma area under the concentration versus time curves (AUC) ratios were 570 and 95 for the COLI solution and powder, respectively. However, the same COLI plasma concentration profiles were obtained with the two formulations. According to our pharmacokinetic model, this difference in ELF COLI concentration could be due to faster systemic absorption of COLI after the powder inhalation than for the solution. In addition, the COLI apparent permeability (Papp) across a Calu-3 epithelium model increased 10-fold when its concentration changed from 100 to 4000 mg/L. Based on this last result, we propose that the difference observed in vivo between the COLI solution and powder could be due to a high local ELF COLI concentration being obtained at the site where the dry particles impact the lung. This high local COLI concentration can lead to a local increase in COLI Papp, which is associated with a high concentration gradient and could produce a high local transfer of COLI across the epithelium and a consequent increase in the overall absorption rate of COLI.

10.
Eur J Pharm Biopharm ; 152: 210-217, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32442738

RESUMO

A significant limitation of locally delivered treatments for chronic pulmonary infections is often the short residence time within the airways. Ciprofloxacin (CIP), for example, undergoes rapid absorption from the airway lumen. Previously, we demonstrated that the complexation of CIP with copper (CIP-Cu) reduces its apparent epithelial permeability and pulmonary absorption rate without affecting antimicrobial activity against Pseudomonas aeruginosa grown planktonically or as biofilms. This study aimed to evaluate the in vivo efficacy of CIP-Cu, prepared as a dry powder, in a chronic lung infection model. The powders were prepared by jet milling (CIP-HCl) and by spray drying (CIP-Cu). A bioluminescent strain of P. aeruginosa (PAO1::p16Slux) was used to prepare bacteria-loaded agar beads that were inoculated intratracheally to rats. The dynamics of the infection were monitored using luminometry. The bacteria/beads ratio was optimized to allow the highest luminescence signal and animal survival for 8 days. The efficacy of the treatment was evaluated by luminometry in addition to the end-point (Day 8) where colony counting was performed after lung harvesting. Luminescent P. aeruginosa entrapped in agar beads were useful to monitor the spatial development of the chronic lung infection in rats. The rats were treated with the dry powders in a nose-only inhalation exposure system (NOIES). CIP-Cu and CIP-HCl powders showed similar aerodynamic properties and comparable CIP lung deposition. However, treatment with CIP-Cu significantly (p < 0.01) reduced by 4-log the number of CFU of P. aeruginosa per lung in the chronic infection model, whereas CIP-HCl effect was not different from the untreated control group.


Assuntos
Ciprofloxacina/farmacologia , Cobre/farmacologia , Pós/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Infecções Respiratórias/tratamento farmacológico , Administração por Inalação , Animais , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Química Farmacêutica/métodos , Modelos Animais de Doenças , Inaladores de Pó Seco/métodos , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Masculino , Permeabilidade , Infecções por Pseudomonas/microbiologia , Ratos , Ratos Sprague-Dawley , Infecções Respiratórias/microbiologia
11.
Pharmaceutics ; 12(4)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340298

RESUMO

Pulmonary drug delivery is a promising strategy to treat lung infectious disease as it allows for a high local drug concentration and low systemic side effects. This is particularly true for low-permeability drugs, such as tobramycin or colistin, that penetrate the lung at a low rate after systemic administration and greatly benefit from lung administration in terms of the local drug concentration. However, for relatively high-permeable drugs, such as fluoroquinolones (FQs), the rate of absorption is so high that the pulmonary administration has no therapeutic advantage compared to systemic or oral administration. Formulation strategies have thus been developed to decrease the absorption rate and increase FQs' residence time in the lung after inhalation. In the present review, some of these strategies, which generally consist of either decreasing the lung epithelium permeability or decreasing the release rate of FQs into the epithelial lining fluid after lung deposition, are presented in regards to their clinical aspects.

12.
Eur J Pharm Biopharm ; 143: 35-43, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31419587

RESUMO

Animal models of chronic lung infection with P. aeruginosa (PA) are useful tools to improve antibiotic (ATB) treatment. Two main models based on the pulmonary instillation of PA embedded in agar or calcium-alginate beads are currently used. However, these two polymers used to prepare the beads have different properties; for example, agar is a neutral polysaccharide while alginate is anionic. We hypothesized that the effect of an ATB on PA entrapped in agar or calcium-alginate beads depends on its physicochemical properties, including charge, and concentration. To test this hypothesis, PAs were entrapped in agar or calcium-alginate beads dispersed in a growth medium containing either tobramycin (TOB), selected as a cationic ATB, or ciprofloxacin (CIP) selected as a neutral zwitterionic ATB. In vitro, time-kill curves evaluating the efficacy of ATBs over time were performed by measuring the light emitted by a bioluminescent PA for 42 h in the presence of ATB concentrations ranging from 0 to 100 times the MIC. In the presence of CIP, time-kill curves obtained with PA trapped in agar or calcium-alginate beads were comparable, whatever the CIP concentration used. In the presence of TOB, a clear difference was observed between the kill curves obtained with PA embedded in agar or calcium-alginate beads. While PA trapped within agar displayed the same susceptibility than the planktonic one, it was unresponsive to TOB for concentrations up to 1-fold MIC when trapped in calcium-alginate. At 10-fold the TOB's MIC, the luminescence emitted by PA01 in the agar beads was reduced by 95% after 40 h, whereas it returned to the same initial value for PA01 trapped in alginate-based beads. The reduction in TOB efficiency was even greater when alginate-based beads were dispersed in a mucus-simulating medium. These results show that the agar and alginate beads models can be interchangeable only for uncharged ATB, such as CIP, but not for cationic ATB, like TOB. In vitro experiments performed in this study could be a quick way to evaluate the effect of each model on a given ATB before performing animal experiments.


Assuntos
Ágar/química , Alginatos/química , Antibacterianos/química , Antibacterianos/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Infecções Respiratórias/tratamento farmacológico , Animais , Ciprofloxacina/química , Ciprofloxacina/farmacologia , Modelos Animais de Doenças , Pulmão/microbiologia , Infecções Respiratórias/microbiologia , Tobramicina/química , Tobramicina/farmacologia
13.
Eur J Pharm Sci ; 138: 105028, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31377132

RESUMO

The purpose of this study was to design inhalable sustained-release nanoparticle-in-microparticles, i.e. nano-embedded microparticles, for the lung delivery of chloramphenicol or thiamphenicol as aerosols. The palmitate ester prodrugs of the two antibiotics were used to prepare PLGA-based nanoparticles or to form pure prodrug nanoparticles. Prodrug-loaded PLGA nanoparticles or pure prodrug nanoparticles were prepared using the emulsion-solvent evaporation method. Dry microparticle powders for inhalation were then produced by spray-drying the nanoparticle suspensions supplemented with lactose as a bulking agent and L-leucine as a dispersing enhancer. Examined under the scanning electron microscopy, the obtained microparticles appeared to be spherical and shriveled, with no crystal-like structures. Drug loading was satisfactory (14 to 34% (m/m)) and the aerodynamic properties determined with a Next Generation Impactor were appropriate for lung delivery, with mass median aerodynamic diameters close to 3 µm. The in vitro release profiles showed that sustained released was achieved with these formulations, with an almost complete release over 14 days.


Assuntos
Aerossóis/química , Cloranfenicol/análogos & derivados , Preparações de Ação Retardada/química , Pró-Fármacos/química , Tianfenicol/química , Administração por Inalação , Cloranfenicol/química , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Inaladores de Pó Seco/métodos , Emulsões/química , Excipientes/química , Pulmão/metabolismo , Microscopia Eletrônica de Varredura/métodos , Nanopartículas/química , Tamanho da Partícula , Pós/química
14.
AAPS PharmSciTech ; 20(5): 205, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31144198

RESUMO

A limitation of antibiotic treatments for P. aeruginosa (PA) chronic pulmonary infections is the reduced efficacy due to sub-therapeutic concentrations at the infection site and the development of biofilm. A novel approach to sustain ciprofloxacin (CIP) in the lungs after inhalation is to reduce its pulmonary absorption rate by its complexation with copper (CIP-Cu). This study aimed to evaluate the antimicrobial action of cationic CIP-Cu complex in PA biofilms in terms of drug concentration and time. Two PA strains, PA01 and PA14, were grown to form biofilm layers in equilibrium with planktonic cells. Static parameters such as pyoverdine production by planktonic cells, enzymatic activity within biofilms, and biofilm biomass 24 h after the addition of CIP or CIP-Cu were evaluated. Also, the kinetic effects of CIP and CIP-Cu on biofilms were evaluated by bioluminescence kinetics using transgenic strains. No differences were observed between CIP and CIP-Cu in terms of efficacy against biofilms, validating the potential of using this complex to treat PA biofilms. Interestingly, CIP concentrations slightly below the MIC value against planktonic bacteria stimulated both virulence and biofilm PA01 production. These results support the need to accurately achieve high CIP concentration in the lungs, which can be more easily achieved by pulmonary delivery of advanced CIP formulations (CIP-metal complexes or liposomal CIP) instead of the oral administration of free CIP.


Assuntos
Antibacterianos/administração & dosagem , Biofilmes/efeitos dos fármacos , Ciprofloxacina/administração & dosagem , Cobre/administração & dosagem , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/química , Biofilmes/crescimento & desenvolvimento , Ciprofloxacina/química , Cobre/química , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Humanos , Testes de Sensibilidade Microbiana/métodos , Pseudomonas aeruginosa/fisiologia
15.
Mol Pharm ; 15(4): 1643-1652, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29514003

RESUMO

Pseudomonas aeruginosa is the predominant pathogen in the persistent lung infections of cystic fibrosis (CF) patients among other diseases. One of the mechanisms of resistance of P. aeruginosa infections is the formation and presence of biofilms. Previously, we demonstrated that PEGylated-tobramycin (Tob-PEG) had superior antimicrobial activity against P. aeruginosa biofilms compared to tobramycin (Tob). The goal of this study was to optimize the method of PEGylation of Tob and assess its activity in an in vitro CF-like mucus barrier biofilm model. Tob was PEGylated using three separate chemical conjugation methods and analyzed by 1H NMR. A comparison of the Tob-PEG products from the different conjugation methods showed significant differences in the reduction of biofilm proliferation after 24 h of treatment. In the CF-like mucus barrier model, Tob-PEG was significantly better than Tob in reducing P. aeruginosa proliferation after only 5 h of treatment ( p < 0.01). Finally, Tob-PEG caused a reduction in the number of surviving P. aeruginosa biofilm colonies higher than that of Tob ( p < 0.0001). We demonstrate the significantly improved antimicrobial activity of Tob-PEG against P. aeruginosa biofilms compared to Tob using two PEGylation methods. Tob-PEG had better in vitro activity compared to that of Tob against P. aeruginosa biofilms growing in a CF-like mucus barrier model.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Muco/metabolismo , Polietilenoglicóis/química , Pseudomonas aeruginosa/efeitos dos fármacos , Tobramicina/farmacologia , Animais , Antibacterianos/química , Galinhas , Fibrose Cística/tratamento farmacológico , Humanos , Pulmão/microbiologia , Testes de Sensibilidade Microbiana/métodos , Infecções por Pseudomonas/tratamento farmacológico , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Suínos , Tobramicina/química
16.
J Control Release ; 271: 118-126, 2018 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-29277683

RESUMO

Ciprofloxacin (CIP) apparent permeability across a pulmonary epithelium model can be controlled by the affinity of its complex with a metal cation. The higher the complex affinity, the larger is the reduction in CIP apparent permeability. The aim of this study was to evaluate if the control of the CIP apparent permeability observed in vitro could be transposed in vivo to control the CIP lung-to-blood absorption rate and CIP concentrations in the lung epithelial lining fluid (ELF) after intratracheal (IT) administration. Two types of innovative inhalable microparticles loaded with the low-affinity CIP-calcium complex (CIP-Ca) or with the high-affinity CIP-copper complex (CIP-Cu) were formulated and characterized. Then, ELF and plasma pharmacokinetics of CIP were studied in rats after IT administration of these two types of microparticles and of a CIP solution (2.5mg/kg). The presence of Cu2+ had little effect on the microparticle properties and the dry powder had aerodynamic properties which allowed it to reach the lungs. CIP concentrations in ELF were much higher after CIP-Cu microparticles IT administration compared to the other two formulations, with mean AUCELF to AUCu,plasma ratios equal to 1069, 203 and 9.8 after CIP-Cu microparticles, CIP-Ca microparticles and CIP solution pulmonary administration, respectively. No significant modification of lung toxicity markers was found (lactate dehydrogenase and total protein). CIP complexation with Cu2+ seems to be an interesting approach to obtain high CIP concentrations in the ELF of lungs after dry powder IT administration.


Assuntos
Antibacterianos/administração & dosagem , Cálcio/administração & dosagem , Ciprofloxacina/administração & dosagem , Cobre/administração & dosagem , Pulmão/metabolismo , Administração por Inalação , Aerossóis , Animais , Antibacterianos/farmacocinética , Cálcio/farmacocinética , Ciprofloxacina/farmacocinética , Cobre/farmacocinética , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Masculino , Pós , Ratos Sprague-Dawley
17.
Mol Pharm ; 13(1): 100-12, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26641021

RESUMO

Ciprofloxacin (CIP) is an antibiotic that has been clinically trialed for the treatment of lung infections by aerosolization. However, CIP is rapidly systemically absorbed after lung administration, increasing the risk for subtherapeutic pulmonary concentrations and resistant bacteria selection. In the presence of calcium, CIP forms complexes that reduce its oral absorption. Such complexation may slow down CIP absorption from the lung thereby maintaining high concentration in this tissue. Thus, we developed inhalable calcium-based inorganic-organic composite microparticles to sustain CIP within the lung. The aerodynamics and micromeritic properties of the microparticles were characterized. FTIR and XRD analysis suggest that the inorganic component of the particles comprised amorphous calcium carbonate and amorphous calcium formate, and that CIP and calcium interact in a 1:1 stoichiometry in the particles. CIP was completely released from the microparticles within 7 h, with profiles showing a slight dependence on pH (5 and 7.4) compared to the dissolution of pure CIP. Transport studies of CIP across Calu-3 cell monolayers, in the presence of various calcium concentrations, showed a decrease of up to 84% in CIP apparent permeability. The apparent minimum inhibitory concentration of CIP against Pseudomonas aeruginosa and Staphylococcus aureus was not changed in the presence of the same calcium concentration. These results indicate that the designed particles should provide sustained levels of CIP with therapeutic effect in the lung. With these microparticles, it should be possible to control CIP pharmacokinetics within the lung, based on controlled CIP release from the particles and reduced apparent permeability across the epithelial barrier due to the cation-CIP interaction.


Assuntos
Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Linhagem Celular , Humanos , Pulmão/microbiologia , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Pseudomonas aeruginosa/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Difração de Raios X
18.
ACS Appl Mater Interfaces ; 8(2): 1164-75, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26692360

RESUMO

Amorphous calcium carbonate (ACC) is known to interact with proteins, for example, in biogenic ACC, to form stable amorphous phases. The control of amorphous/crystalline and inorganic/organic ratios in inhalable calcium carbonate microparticles may enable particle properties to be adapted to suit the requirements of dry powders for pulmonary delivery by oral inhalation. For example, an amorphous phase can immobilize and stabilize polypeptides in their native structure and amorphous and crystalline phases have different mechanical properties. Therefore, inhalable composite microparticles made of inorganic (i.e., calcium carbonate and calcium formate) and organic (i.e., hyaluronan (HA)) amorphous and crystalline phases were investigated for peptide and protein pulmonary aerosol delivery. The crystalline/amorphous ratio and polymorphic form of the inorganic component was altered by changing the microparticle drying rate and by changing the ammonium carbonate and HA initial concentration. The bioactivity of the model peptide, salmon calcitonin (sCT), coprocessed with alpha-1-antitrypsin (AAT), a model protein with peptidase inhibitor activity, was maintained during processing and the microparticles had excellent aerodynamic properties, making them suitable for pulmonary aerosol delivery. The bioavailability of sCT after aerosol delivery as sCT and AAT-loaded composite microparticles to rats was 4-times higher than that of sCT solution.


Assuntos
Carbonato de Cálcio/química , Pneumopatias/tratamento farmacológico , Nanopartículas/química , Peptídeos/química , Administração por Inalação , Aerossóis/química , Aerossóis/uso terapêutico , Animais , Calcitonina/administração & dosagem , Calcitonina/química , Carbonato de Cálcio/administração & dosagem , Humanos , Pneumopatias/patologia , Nanopartículas/administração & dosagem , Tamanho da Partícula , Peptídeos/administração & dosagem , Ratos , alfa 1-Antitripsina/administração & dosagem , alfa 1-Antitripsina/química
19.
Eur J Pharm Biopharm ; 96: 65-75, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26192459

RESUMO

The aim of this work was the development of innovative levofloxacin-loaded swellable microspheres (MS) for the dry aerosol therapy of pulmonary chronicPseudomonas aeruginosainfections in Cystic Fibrosis patients. In a first step, a factorial design was applied to optimize formulations of chitosan-based MS with glutaraldehyde as crosslinker. After optimization, other crosslinkers (genipin, glutaric acid and glyceraldehyde) were tested. Analyses of MS included aerodynamic and swelling properties, morphology, drug loading, thermal and chemical characteristics,in vitroantibacterial activity and drug release studies. The prepared MS presented a drug content ranging from 39.8% to 50.8% of levofloxacin in an amorphous or dispersed state, antibacterial activity and fast release profiles. The highest degree of swelling was obtained for MS crosslinked with glutaric acid and genipin. These formulations also presented satisfactory aerodynamic properties, making them a promising alternative, in dry-powder inhalers, to levofloxacin solution for inhalation.


Assuntos
Antibacterianos/administração & dosagem , Quitosana/química , Reagentes de Ligações Cruzadas/química , Portadores de Fármacos/química , Levofloxacino/administração & dosagem , Terapia Respiratória/métodos , Tecnologia Farmacêutica/métodos , Antibacterianos/química , Antibacterianos/uso terapêutico , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Liberação Controlada de Fármacos , Humanos , Levofloxacino/química , Levofloxacino/uso terapêutico , Microesferas , Tamanho da Partícula , Difração de Pó , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
20.
Int J Pharm ; 483(1-2): 6-18, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25660067

RESUMO

A challenge exists to produce dry powder inhaler (DPI) formulations with appropriate formulation stability, biological activity and suitable physicochemical and aerosolisation characteristics that provide a viable alternative to parenteral formulations. The present study aimed to produce sugar-based nanoporous/nanoparticulate microparticles (NPMPs) loaded with a therapeutic peptide - salmon calcitonin (sCT). The physicochemical properties of the powders and their suitability for pulmonary delivery of sCT were determined. Production of powders composed of sCT loaded into raffinose or trehalose with or without hydroxypropyl-ß-cyclodextrin was carried out using a laboratory scale spray dryer. Spray dried microparticles were spherical, porous and of small geometric size (≤2 µm). Aerodynamic assessment showed that the fine particle fraction (FPF) less than 5 µm ranged from 45 to 86%, depending on the formulation. The mass median aerodynamic diameter (MMAD) varied between 1.9 and 4.7 µm. Compared to unprocessed sCT, sCT:raffinose composite systems presented a bioactivity of approximately 100% and sCT:trehalose composite systems between 70-90% after spray drying. Storage stability studies demonstrated composite systems with raffinose to be more stable than those containing trehalose. These sugar-based salmon calcitonin-loaded NPMPs retain reasonable sCT bioactivity and have micromeritic and physicochemical properties which indicate their suitability for pulmonary delivery. Formulations presented a similar pharmacokinetic profile to sCT solution. Hence the advantage of a dry powder formulation is its non-invasive delivery route and ease of administration of the sCT.


Assuntos
Calcitonina/administração & dosagem , Calcitonina/farmacocinética , Carboidratos/química , Nanopartículas/química , Administração por Inalação , Calcitonina/química , Química Farmacêutica , Estabilidade de Medicamentos , Inaladores de Pó Seco , Tamanho da Partícula , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...