Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(29): 7496-7501, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39013106

RESUMO

Atomic layer deposition (ALD) processes are known to deposit submonolayers of material per cycle, primarily attributed to steric hindrance and a limited number of surface sites. However, an often-overlooked factor is the random sequential adsorption (RSA) mechanism, where precursor molecules arrive one-by-one and adsorb at random surface sites. Consequently, the saturation coverage of precursors significantly deviates from ideal closed packing. In this study, we investigated the influence of RSA on precursor adsorption saturation and, consequently, on the growth per cycle (GPC) of the ALD processes. Our simulations revealed that the RSA model leads to a 22% to 40% lower surface density compared to the reference case of ordered packing. Furthermore, based on the precursor shape and size, we estimated GPC values with an average accuracy of 0.05 Å relative to experimental literature data. This work shows the critical role of RSA in ALD, emphasizing the need to consider this mechanism for a more accurate process design and optimization.

2.
Langmuir ; 39(12): 4265-4273, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36921108

RESUMO

Area-selective atomic layer deposition using small-molecule inhibitors (SMIs) involves vapor-phase dosing of inhibitor molecules, resulting in an industry-compatible approach. However, the identification of suitable SMIs that yield a high selectivity remains a challenging task. Recently, aniline (C6H5NH2) was shown to be an effective SMI during the area-selective deposition (ASD) of TiN, giving 6 nm of selective growth on SiO2 in the presence of Ru and Co non-growth areas. In this work, using density functional theory (DFT) and random sequential adsorption (RSA) simulations, we investigated how aniline can effectively block precursor adsorption on specific areas. Our DFT calculations confirmed that aniline selectively adsorbs on Ru and Co non-growth areas, whereas its adsorption on the SiO2 growth area is limited to physisorption. DFT reveals two stable adsorption configurations of aniline on the metal surfaces. Further calculations on the aniline-functionalized surfaces show that the aniline inhibitor significantly reduces the interaction of Ti precursor, tetrakis(dimethylamino)titanium, with the non-growth area. In addition, RSA simulations showed that the co-presence of two stable adsorption configurations allows for a high surface inhibitor coverage on both Co and Ru surfaces. As the surface saturates, there is a transition from the thermodynamically most favorable adsorption configuration to the sterically most favorable adsorption configuration, which results in a sufficiently dense inhibition layer, such that an incoming precursor molecule cannot fit in between the adsorbed precursor molecules. We also found that, as a result of the catalytic activity of the metallic non-growth area, further reactions of inhibitor molecules, such as hydrogenolysis, can play a role in precursor blocking.

3.
Phys Chem Chem Phys ; 20(41): 26681-26687, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30320321

RESUMO

Propylene oxide (PO) is one of the 50 most produced chemicals according to the production volume. Environmental and economic drawbacks of conventional PO production processes necessitate new production methods. Among the new production alternatives, direct epoxidation of propylene to propylene oxide by molecular oxygen is a highly desired method and seen as the holy grail of propylene epoxidation studies. In this study, the propylene epoxidation mechanism on an Ag2O(001) surface is investigated computationally by means of density functional theory (DFT) calculations using the Vienna Ab-initio Simulation Package (VASP). A perfect Ag2O(001) surface and a surface with one O vacancy are utilized for this purpose. It is found that propylene oxide can be directly formed on an Ag2O(001) surface whether there is an oxygen vacancy or not. The rate controlling step is PO desorption from both surfaces. PO isomers, i.e. acetone and propanal, can also be formed on these surfaces. However, activation barriers do exist for these molecules. Direct allyl formation on the Ag2O(001) surface is found to be unfavorable unlike what is proposed in the literature. On the other hand, it is observed that an allyl radical can be formed either via an oxametallocycle path or after the formation of propylene oxide. In fact, the discovered allyl radical formation pathway from propylene oxide is found as the most probable successive reaction pathway because of the high desorption barrier of PO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA