Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34770492

RESUMO

Pulsed thermography is a commonly used non-destructive testing method and is increasingly studied for the assessment of advanced materials such as carbon fibre-reinforced polymer (CFRP). Different processing approaches are proposed to detect and characterize anomalies that may be generated in structures during the manufacturing cycle or service period. In this study, matrix decomposition using Robust PCA via Inexact-ALM is investigated as a pre- and post-processing approach in combination with state-of-the-art approaches (i.e., PCT, PPT and PLST) on pulsed thermography thermal data. An academic sample with several artificial defects of different types, i.e., flat-bottom-holes (FBH), pull-outs (PO) and Teflon inserts (TEF), was employed to assess and compare defect detection and segmentation capabilities of different processing approaches. For this purpose, the contrast-to-noise ratio (CNR) and similarity coefficient were used as quantitative metrics. The results show a clear improvement in CNR when Robust PCA is applied as a pre-processing technique, CNR values for FBH, PO and TEF improve up to 164%, 237% and 80%, respectively, when compared to principal component thermography (PCT), whilst the CNR improvement with respect to pulsed phase thermography (PPT) was 77%, 101% and 289%, respectively. In the case of partial least squares thermography, Robust PCA results improved not only only when used as a pre-processing technique but also when used as a post-processing technique; however, this improvement is higher for FBHs and POs after pre-processing. Pre-processing increases CNR scores for FBHs and POs with a ratio from 0.43% to 115.88% and from 13.48% to 216.63%, respectively. Similarly, post-processing enhances the FBHs and POs results with a ratio between 9.62% and 296.9% and 16.98% to 92.6%, respectively. A low-rank matrix computed from Robust PCA as a pre-processing technique on raw data before using PCT and PPT can enhance the results of 67% of the defects. Using low-rank matrix decomposition from Robust PCA as a pre- and post-processing technique outperforms PLST results of 69% and 67% of the defects. These results clearly indicate that pre-processing pulsed thermography data by Robust PCA can elevate the defect detectability of advanced processing techniques, such as PCT, PPT and PLST, while post-processing using the same methods, in some cases, can deteriorate the results.

2.
Sensors (Basel) ; 21(8)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920261

RESUMO

Pulsed Thermography (PT) data are usually affected by noise and as such most of the research effort in the last few years has been directed towards the development of advanced signal processing methods to improve defect detection. Among the numerous techniques that have been proposed, principal component thermography (PCT)-based on principal component analysis (PCA)-is one of the most effective in terms of defect contrast enhancement and data compression. However, it is well-known that PCA can be significantly affected in the presence of corrupted data (e.g., noise and outliers). Robust PCA (RPCA) has been recently proposed as an alternative statistical method that handles noisy data more properly by decomposing the input data into a low-rank matrix and a sparse matrix. We propose to process PT data by RPCA instead of PCA in order to improve defect detectability. The performance of the resulting approach, Robust Principal Component Thermography (RPCT)-based on RPCA, was evaluated with respect to PCT-based on PCA, using a CFRP sample containing artificially produced defects. We compared results quantitatively based on two metrics, Contrast-to-Noise Ratio (CNR), for defect detection capabilities, and the Jaccard similarity coefficient, for defect segmentation potential. CNR results were on average 40% higher for RPCT than for PCT, and the Jaccard index was slightly higher for RPCT (0.7395) than for PCT (0.7010). In terms of computational time, however, PCT was 11.5 times faster than RPCT. Further investigations are needed to assess RPCT performance on a wider range of materials and to optimize computational time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...