Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Eur J Biochem ; 232(2): 420-4, 1995 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-7556190

RESUMO

The role of simultaneously existing ATP-binding sites in the catalytic process of Na+/K(+)-ATPase is unclear. In order to learn whether blocking the E1ATP site affects the properties of the E2ATP site, the E1ATP site was inactivated by either fluorescein 5'-isothiocyanate, the non-phosphorylating Cr(H2O)4AdoPP[CH2]P or the phosphorylating Cr(H2O)4ATP. The properties of the remaining E2ATP site were studied by measuring 'backdoor phosphorylation' in the presence of ouabain, or K(+)-activated hydrolysis of p-nitrophenyl phosphate. The involvement of the E2ATP site was further tested by the effects of Co(NH3)4ATP, a specific inactivator of this site. When the E1ATP site was inactivated by fluorescein 5'-isothiocyanate or the non-phosphorylating Cr(H2O)4AdoPP[CH2]P, backdoor phosphorylation and the activity of K(+)-activated p-nitrophenylphosphatase remained unchanged. Both processes were lost, however, when the E2ATP site was additionally inactivated by Co(NH3)4ATP. Inactivation of the E1ATP site by fluorescein 5'-isothiocyanate or Cr(H2O)4AdoPP[CH2]P decreased the affinity of the p-nitrophenylphosphatase activity of the E2ATP site for the substrate p-nitrophenyl phosphate by four times. This is consistent with a former report showing that dephosphorylation in a fluorescein 5'-isothiocyanate-inactivated Na+/K(+)-ATPase has a lowered sensitivity for ATP [Scheiner-Bobis, G., Antonipillai, J. & Farley, R. A. (1993) Biochemistry 32, 9592-9599]. Inactivation of the E1ATP site by the phosphorylating Cr(H2O)4ATP, however, led to a loss of the property of the E2ATP site to hydrolyse K(+)-dependent p-nitrophenyl phosphate and to achieve backdoor phosphorylation. Evidently, ATP sites coexist in Na+/K(+)-ATPase, and binding of ATP to one site affects the property of the other site [Scheiner-Bobis, G., Esmann, M. & Schoner, W. (1989) Eur. J. Biochem. 183, 173-178]. Although the enzyme can be phosphorylated from both ATP sites, phosphorylation of the E1ATP site excludes the phosphorylation of the E2ATP site.


Assuntos
ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Sítios de Ligação , Cromo/farmacologia , Cobalto/farmacologia , Inibidores Enzimáticos/farmacologia , Fluoresceína-5-Isotiocianato/farmacologia , Técnicas In Vitro , Cinética , Compostos Organometálicos/farmacologia , Fosforilação , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...