Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Biotechnol ; 17(6): e14466, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38829370

RESUMO

Microbial communities from extreme environments are largely understudied, but are essential as producers of metabolites, including enzymes, for industrial processes. As cultivation of most microorganisms remains a challenge, culture-independent approaches for enzyme discovery in the form of metagenomics to analyse the genetic potential of a community are rapidly becoming the way forward. This study focused on analysing a metagenome from the cold and alkaline ikaite columns in Greenland, identifying 282 open reading frames (ORFs) that encoded putative carbohydrate-modifying enzymes with potential applications in, for example detergents and other processes where activity at low temperature and high pH is desired. Seventeen selected ORFs, representing eight enzyme families were synthesized and expressed in two host organisms, Escherichia coli and Aliivibrio wodanis. Aliivibrio wodanis demonstrated expression of a more diverse range of enzyme classes compared to E. coli, emphasizing the importance of alternative expression systems for enzymes from extremophilic microorganisms. To demonstrate the validity of the screening strategy, we chose a recombinantly expressed cellulolytic enzyme from the metagenome for further characterization. The enzyme, Cel240, exhibited close to 40% of its relative activity at low temperatures (4°C) and demonstrated endoglucanase characteristics, with a preference for cellulose substrates. Despite low sequence similarity with known enzymes, computational analysis and structural modelling confirmed its cellulase-family affiliation. Cel240 displayed activity at low temperatures and good stability at 25°C, activity at alkaline pH and increased activity in the presence of CaCl2, making it a promising candidate for detergent and washing industry applications.


Assuntos
Celulase , Temperatura Baixa , Detergentes , Estabilidade Enzimática , Escherichia coli , Metagenômica , Groenlândia , Detergentes/química , Escherichia coli/genética , Escherichia coli/metabolismo , Celulase/genética , Celulase/metabolismo , Celulase/química , Metagenoma , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Expressão Gênica , Fases de Leitura Aberta
2.
Front Microbiol ; 15: 1358787, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655082

RESUMO

The ikaite columns in the Ikka Fjord, SW Greenland, represent a permanently cold and alkaline environment known to contain a rich bacterial diversity. 16S and 18S rRNA gene amplicon and metagenomic sequencing was used to investigate the microbial diversity in the columns and for the first time, the eukaryotic and archaeal diversity in ikaite columns were analyzed. The results showed a rich prokaryotic diversity that varied across columns as well as within each column. Seven different archaeal phyla were documented in multiple locations inside the columns. The columns also contained a rich eukaryotic diversity with 27 phyla representing microalgae, protists, fungi, and small animals. Based on metagenomic sequencing, 25 high-quality MAGs were assembled and analyzed for the presence of genes involved in cycling of nitrogen, sulfur, and phosphorous as well as genes encoding carbohydrate-active enzymes (CAZymes), showing a potentially very bioactive microbial community.

3.
Front Microbiol ; 14: 1121857, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910232

RESUMO

The enzymes of microorganisms that live in cold environments must be able to function at ambient temperatures. Cold-adapted enzymes generally have less ordered structures that convey a higher catalytic rate, but at the cost of lower thermodynamic stability. In this study, we characterized P355, a novel intracellular subtilisin protease (ISP) derived from the genome of Planococcus halocryophilus Or1, which is a bacterium metabolically active down to -25°C. P355's stability and activity at varying pH values, temperatures, and salt concentrations, as well as its temperature-dependent kinetics, were determined and compared to an uncharacterized thermophilic ISP (T0099) from Parageobacillus thermoglucosidasius, a previously characterized ISP (T0034) from Planococcus sp. AW02J18, and Subtilisin Carlsberg (SC). The results showed that P355 was the most heat-labile of these enzymes, closely followed by T0034. P355 and T0034 exhibited catalytic constants (k cat ) that were much higher than those of T0099 and SC. Thus, both P355 and T0034 demonstrate the characteristics of the stability-activity trade-off that has been widely observed in cold-adapted proteases.

4.
Appl Environ Microbiol ; 83(9)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28213548

RESUMO

Only 1% of marine bacteria are currently culturable using standard laboratory procedures, and this is a major obstacle for our understanding of the biology of marine microorganisms and for the discovery of novel microbial natural products. Therefore, the purpose of this study was to investigate if improved cultivation conditions, including the use of an alternative gelling agent and supplementation with signaling molecules, improve the culturability of bacteria from seawater. Replacing agar with gellan gum improved viable counts 3- to 40-fold, depending on medium composition and incubation conditions, with a maximum of 6.6% culturability relative to direct cell counts. Through V4 amplicon sequencing we found that culturable diversity was also affected by a change in gelling agent, facilitating the growth of orders not culturable on agar-based substrates. Community analyses showed that communities grown on gellan gum substrates were significantly different from communities grown on agar and that they covered a larger fraction of the seawater community. Other factors, such as incubation temperature and time, had less obvious effects on viable counts and culturable diversity. Supplementation with acylated homoserine lactones (AHLs) did not have a positive effect on total viable counts or a strong effect on culturable diversity. However, low concentrations of AHLs increased the relative abundance of sphingobacteria. Hence, with alternative growth substrates, it is possible to significantly increase the number and diversity of cultured marine bacteria.IMPORTANCE Serious challenges to human health, such as the occurrence and spread of antibiotic resistance and an aging human population in need of bioactive pharmaceuticals, have revitalized the search for natural microbial products. The marine environment, representing the largest ecosystem in the biosphere, harbors an immense and virtually untapped microbial diversity producing unique bioactive compounds. However, we are currently able to cultivate only a minute fraction of this diversity. The lack of cultivated microbes is hampering not only bioprospecting efforts but also our general understanding of marine microbes. In this study, we present a means to increase the number and diversity of cultured bacteria from seawater, showing that relatively simple changes to medium components may facilitate the isolation and growth of hitherto unknown bacterial orders.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/crescimento & desenvolvimento , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Técnicas Bacteriológicas/métodos , Meios de Cultura/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Biodiversidade , Viabilidade Microbiana , Polissacarídeos Bacterianos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...