Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 58(28): 9565-9569, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-30892798

RESUMO

Accurate quantification of the copy numbers of noncoding RNA has recently emerged as an urgent problem, with impact on fields such as RNA modification research, tissue differentiation, and others. Herein, we present a hybridization-based approach that uses microscale thermophoresis (MST) as a very fast and highly precise readout to quantify, for example, single tRNA species with a turnaround time of about one hour. We developed MST to quantify the effect of tRNA toxins and of heat stress and RNA modification on single tRNA species. A comparative analysis also revealed significant differences to RNA-Seq-based quantification approaches, strongly suggesting a bias due to tRNA modifications in the latter. Further applications include the quantification of rRNA as well as of polyA levels in cellular RNA.


Assuntos
RNA não Traduzido/química , Fluorescência
2.
Front Immunol ; 8: 312, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28392787

RESUMO

A fundamental mechanism of the innate immune system is the recognition, via extra- and intracellular pattern-recognition receptors, of pathogen-associated molecular patterns. A prominent example is represented by foreign nucleic acids, triggering the activation of several signaling pathways. Among these, the endosomal toll-like receptor 7 (TLR7) is known to be activated by single-stranded RNA (ssRNA), which can be specifically influenced through elements of sequence structure and posttranscriptional modifications. Furthermore, small molecules TLR7 agonists (smTLRa) are applied as boosting adjuvants in vaccination processes. In this context, covalent conjugations between adjuvant and vaccines have been reported to exhibit synergistic effects. Here, we describe a concept to chemically combine three therapeutic functions in one RNA bioconjugate. This consists in the simultaneous TLR7 stimulation by ssRNA and smTLRa as well as the therapeutic function of the RNA itself, e.g., as a vaccinating or knockdown agent. We have hence synthesized bioconjugates of mRNA and siRNA containing covalently attached smTLRa and tested their function in TLR7 stimulation. Strikingly, the bioconjugates displayed decreased rather than synergistically increased stimulation. The decrease was distinct from the antagonistic action of an siRNA bearing a Gm motive, as observed by direct comparison of the effects in the presence of otherwise stimulatory RNA. In summary, these investigations showed that TRL7 activation can be impeded by bioconjugation of small molecules to RNA.

3.
Methods Mol Biol ; 1562: 3-18, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28349450

RESUMO

The detection and quantification of methylated RNA can be beneficial to understand certain cellular regulation processes such as transcriptional modulation of gene expression, immune response, or epigenetic alterations. Therefore, it is necessary to have methods available, which are extremely sensitive and accurate, for instance liquid chromatography-tandem mass spectrometry (LC-MS/MS). Here, we describe the preparation of RNA samples by enzymatic hydrolysis and the subsequent analysis of ribonucleosides by LC-MS/MS via NLS (Neutral loss scan) and DMRM (Dynamic multiple reaction monitoring). Also, we provide variations of these methods including chromatographic techniques and different kinds of quantification.


Assuntos
Cromatografia Líquida , RNA , Espectrometria de Massas em Tandem , Calibragem , Cromatografia Líquida de Alta Pressão , Marcação por Isótopo , Metilação , RNA/química , RNA/metabolismo , Ribonucleases/metabolismo , Estatística como Assunto/métodos , Fluxo de Trabalho
4.
Biomolecules ; 7(1)2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28208788

RESUMO

Analysis of RNA modifications by traditional physico-chemical approaches is labor  intensive,  requires  substantial  amounts  of  input  material  and  only  allows  site-by-site  measurements.  The  recent  development  of  qualitative  and  quantitative  approaches  based  on   next-generation sequencing (NGS) opens new perspectives for the analysis of various cellular RNA  species.  The  Illumina  sequencing-based  RiboMethSeq  protocol  was  initially  developed  and  successfully applied for mapping of ribosomal RNA (rRNA) 2'-O-methylations. This method also  gives excellent results in the quantitative analysis of rRNA modifications in different species and  under varying growth conditions. However, until now, RiboMethSeq was only employed for rRNA,  and the whole sequencing and analysis pipeline was only adapted to this long and rather conserved  RNA species. A deep understanding of RNA modification functions requires large and global  analysis datasets for other important RNA species, namely for transfer RNAs (tRNAs), which are  well known to contain a great variety of functionally-important modified residues. Here, we  evaluated the application of the RiboMethSeq protocol for the analysis of tRNA 2'-O-methylation in  Escherichia coli and in Saccharomyces cerevisiae. After a careful optimization of the bioinformatic  pipeline, RiboMethSeq proved to be suitable for relative quantification of methylation rates for  known modified positions in different tRNA species.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA de Transferência/química , Análise de Sequência de RNA/métodos , Biologia Computacional/métodos , Escherichia coli/química , Escherichia coli/genética , Metilação , RNA Bacteriano/química , RNA Fúngico/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética
5.
Methods ; 107: 48-56, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27020891

RESUMO

The analysis of RNA modifications is of high importance in order to address a wide range of biological questions. Therefore, a highly sensitive and accurate method such as liquid chromatography-tandem mass spectrometry (LC-MS/MS) has to be available. By using different LC-MS/MS procedures, it is not only possible to quantify very low amounts of RNA modifications, but also to detect probably unknown modified nucleosides. For these cases the dynamic multiple reaction monitoring and the neutral loss scan are the most common techniques. Here, we provide the whole workflow for analyzing RNA samples regarding their modification content. This includes an equipment list, the preparation of required solutions/enzymes and the creation of an internal standard or nucleoside stocks for internal or external calibration. Furthermore, we describe the preparation of RNA samples for the subsequent LC-MS/MS analysis and the corresponding analysis process.


Assuntos
Cromatografia Líquida/métodos , Processamento Pós-Transcricional do RNA/genética , RNA/isolamento & purificação , Espectrometria de Massas em Tandem/métodos , Humanos , RNA/genética
6.
Nucleic Acids Res ; 43(22): 10952-62, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26424849

RESUMO

Dnmt2 enzymes are cytosine-5 methyltransferases that methylate C38 of several tRNAs. We report here that the activities of two Dnmt2 homologs, Pmt1 from Schizosaccharomyces pombe and DnmA from Dictyostelium discoideum, are strongly stimulated by prior queuosine (Q) modification of the substrate tRNA. In vivo tRNA methylation levels were stimulated by growth of cells in queuine-containing medium; in vitro Pmt1 activity was enhanced on Q-containing RNA; and queuine-stimulated in vivo methylation was abrogated by the absence of the enzyme that inserts queuine into tRNA, eukaryotic tRNA-guanine transglycosylase. Global analysis of tRNA methylation in S. pombe showed a striking selectivity of Pmt1 for tRNA(Asp) methylation, which distinguishes Pmt1 from other Dnmt2 homologs. The present analysis also revealed a novel Pmt1- and Q-independent tRNA methylation site in S. pombe, C34 of tRNA(Pro). Notably, queuine is a micronutrient that is scavenged by higher eukaryotes from the diet and gut microflora. This work therefore reveals an unanticipated route by which the environment can modulate tRNA modification in an organism.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Guanina/análogos & derivados , Micronutrientes/metabolismo , RNA de Transferência/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Dictyostelium/enzimologia , Guanina/metabolismo , Metilação , Pentosiltransferases/metabolismo , RNA de Transferência de Ácido Aspártico/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
7.
Nucleic Acids Res ; 43(20): 9950-64, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26365242

RESUMO

The combination of Reverse Transcription (RT) and high-throughput sequencing has emerged as a powerful combination to detect modified nucleotides in RNA via analysis of either abortive RT-products or of the incorporation of mismatched dNTPs into cDNA. Here we simultaneously analyze both parameters in detail with respect to the occurrence of N-1-methyladenosine (m(1)A) in the template RNA. This naturally occurring modification is associated with structural effects, but it is also known as a mediator of antibiotic resistance in ribosomal RNA. In structural probing experiments with dimethylsulfate, m(1)A is routinely detected by RT-arrest. A specifically developed RNA-Seq protocol was tailored to the simultaneous analysis of RT-arrest and misincorporation patterns. By application to a variety of native and synthetic RNA preparations, we found a characteristic signature of m(1)A, which, in addition to an arrest rate, features misincorporation as a significant component. Detailed analysis suggests that the signature depends on RNA structure and on the nature of the nucleotide 3' of m(1)A in the template RNA, meaning it is sequence dependent. The RT-signature of m(1)A was used for inspection and confirmation of suspected modification sites and resulted in the identification of hitherto unknown m(1)A residues in trypanosomal tRNA.


Assuntos
Adenosina/análogos & derivados , Sequenciamento de Nucleotídeos em Larga Escala , RNA/química , Transcrição Reversa , Análise de Sequência de RNA , Adenosina/análise , Animais , Humanos , Aprendizado de Máquina , Camundongos , Homologia de Sequência do Ácido Nucleico
9.
PLoS One ; 10(3): e0119261, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25747122

RESUMO

In eukaryotes, wobble uridines in the anticodons of tRNA(Lys)UUU, tRNA(Glu)UUC and tRNA(Gln)UUG are modified to 5-methoxy-carbonyl-methyl-2-thio-uridine (mcm5s2U). While mutations in subunits of the Elongator complex (Elp1-Elp6), which disable mcm5 side chain formation, or removal of components of the thiolation pathway (Ncs2/Ncs6, Urm1, Uba4) are individually tolerated, the combination of both modification defects has been reported to have lethal effects on Saccharomyces cerevisiae. Contrary to such absolute requirement of mcm5s2U for viability, we demonstrate here that in the S. cerevisiae S288C-derived background, both pathways can be simultaneously inactivated, resulting in combined loss of tRNA anticodon modifications (mcm5U and s2U) without a lethal effect. However, an elp3 disruption strain displays synthetic sick interaction and synergistic temperature sensitivity when combined with either uba4 or urm1 mutations, suggesting major translational defects in the absence of mcm5s2U modifications. Consistent with this notion, we find cellular protein levels drastically decreased in an elp3uba4 double mutant and show that this effect as well as growth phenotypes can be partially rescued by excess of tRNA(Lys)UUU. These results may indicate a global translational or protein homeostasis defect in cells simultaneously lacking mcm5 and s2 wobble uridine modification that could account for growth impairment and mainly originates from tRNA(Lys)UUU hypomodification and malfunction.


Assuntos
Processamento Pós-Transcricional do RNA/fisiologia , RNA Fúngico/metabolismo , RNA de Transferência de Lisina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Uridina/metabolismo , RNA Fúngico/genética , RNA de Transferência de Lisina/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Uridina/genética
10.
FEBS Lett ; 589(8): 904-9, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25747390

RESUMO

The ubiquitin-like protein Urm1 from budding yeast and its E1-like activator Uba4 have dual roles in protein urmylation and tRNA thiolation pathways. To study whether these are conserved among eukaryotes, we used gene shuffles to replace the yeast proteins by their human counterparts, hURM1 and hUBA4/MOCS3. As judged from biochemical and genetical assays, hURM1 and hUBA4 are functional in yeast, albeit at reduced efficiencies. They mediate urmylation of the peroxiredoxin Ahp1, a known urmylation target in yeast, and support tRNA thiolation. Similar to hUBA4, yeast Uba4 itself is modified by Urm1 and hURM1 suggesting target overlap between eukaryal urmylation pathways. In sum, our study shows that dual-function ubiquitin-like Urm1·Uba4 systems are conserved and exchangeable between human and yeast cells.


Assuntos
Sequência Conservada , Nucleotidiltransferases/metabolismo , RNA de Transferência/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Sulfurtransferases/metabolismo , Ubiquitinas/metabolismo , Anticódon/metabolismo , Células HeLa , Humanos , Nucleotidiltransferases/química , RNA de Transferência/genética , Proteínas de Saccharomyces cerevisiae/química , Homologia de Sequência de Aminoácidos , Sulfurtransferases/química , Ubiquitinas/química
11.
PLoS Genet ; 11(1): e1004931, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569479

RESUMO

Elongator is a conserved protein complex comprising six different polypeptides that has been ascribed a wide range of functions, but which is now known to be required for modification of uridine residues in the wobble position of a subset of tRNAs in yeast, plants, worms and mammals. In previous work, we showed that Elongator's largest subunit (Elp1; also known as Iki3) was phosphorylated and implicated the yeast casein kinase I Hrr25 in Elongator function. Here we report identification of nine in vivo phosphorylation sites within Elp1 and show that four of these, clustered close to the Elp1 C-terminus and adjacent to a region that binds tRNA, are important for Elongator's tRNA modification function. Hrr25 protein kinase directly modifies Elp1 on two sites (Ser-1198 and Ser-1202) and through analyzing non-phosphorylatable (alanine) and acidic, phosphomimic substitutions at Ser-1198, Ser-1202 and Ser-1209, we provide evidence that phosphorylation plays a positive role in the tRNA modification function of Elongator and may regulate the interaction of Elongator both with its accessory protein Kti12 and with Hrr25 kinase.


Assuntos
Caseína Quinase I/genética , Histona Acetiltransferases/genética , Fatores de Alongamento de Peptídeos/genética , RNA de Transferência/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Alanina/genética , Caseína Quinase I/metabolismo , Regulação Fúngica da Expressão Gênica , Histona Acetiltransferases/metabolismo , Complexos Multiproteicos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Fenótipo , Fosforilação , Proteínas de Saccharomyces cerevisiae/metabolismo , Uridina/genética
12.
Nucleic Acids Res ; 42(18): e142, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25129236

RESUMO

In the resurging field of RNA modifications, quantification is a bottleneck blocking many exciting avenues. With currently over 150 known nucleoside alterations, detection and quantification methods must encompass multiple modifications for a comprehensive profile. LC-MS/MS approaches offer a perspective for comprehensive parallel quantification of all the various modifications found in total RNA of a given organism. By feeding (13)C-glucose as sole carbon source, we have generated a stable isotope-labeled internal standard (SIL-IS) for bacterial RNA, which facilitates relative comparison of all modifications. While conventional SIL-IS approaches require the chemical synthesis of single modifications in weighable quantities, this SIL-IS consists of a nucleoside mixture covering all detectable RNA modifications of Escherichia coli, yet in small and initially unknown quantities. For absolute in addition to relative quantification, those quantities were determined by a combination of external calibration and sample spiking of the biosynthetic SIL-IS. For each nucleoside, we thus obtained a very robust relative response factor, which permits direct conversion of the MS signal to absolute amounts of substance. The application of the validated SIL-IS allowed highly precise quantification with standard deviations<2% during a 12-week period, and a linear dynamic range that was extended by two orders of magnitude.


Assuntos
Cromatografia Líquida , RNA/química , Espectrometria de Massas em Tandem , Isótopos de Carbono , Cromatografia Líquida/normas , Escherichia coli/metabolismo , Nucleosídeos/química , Nucleosídeos/metabolismo , Pseudouridina/análise , Padrões de Referência , Espectrometria de Massas em Tandem/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...