Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 5866, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041159

RESUMO

This study examined the effect of varying concentrations of Ocimum basilicum aqueous extract, which was done via the green synthesis of Silver nanoparticles (AgNPs), on the identification of the most effective concentration for bacteria inhibitory activity. Different concentrations of the aqueous Ocimum basilicum extract (0.25, 0.50, 0.75 and 1.00 mM) were used as reducing and stabilizing agent to synthesize AgNPs by means of the reduction method. The crystal structure and morphology of the NPs were characterized UV-Vis spectra, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The antibacterial efficacy of AgNPs was studied against E. coli ATCC 35218 using well diffusion, MIC, MBC, and time-kill curve. The dark yellow color of the Ocimum basilicum aqueous solution indicates the successful synthesis process of the AgNPs. UV-spectra of the AgNPs display a gradual increase of absorption in sequence with concentration increase of aqueous Ocimum basilicum extract solution from 0.25 to 1.00 mM. This, in turn, led to a shift in the wavelength from 488 to 497 nm, along with a change in the nanoparticle size from 52 to 8 nm. The tests also showed a high activity of the particles against bacteria (E. coli), ranging between 15.6 and 62.5 µg/ml. Based on AgNPs, it was confirmed that an aqueous Ocimum basilicum extract can be used as an effective, reducing and stabilizing agent for the synthesis of different sizes of AgNPs based on the solvent concentration. The AgNPs also proved to be effective in inhibiting and killing bacteria.


Assuntos
Nanopartículas Metálicas , Ocimum basilicum , Escherichia coli , Nanopartículas Metálicas/química , Excipientes , Prata/química , Bactérias
2.
Environ Res ; 210: 112975, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35196501

RESUMO

Pharmaceutical wastewater is a frequent kind of wastewater with high quantities of organic pollutants, although little research has been done in the area. Pharmaceutical wastewaters containing antibiotics and high salinity may impair traditional biological treatment, resulting in the propagation of antibiotic resistance genes. The potential for advanced oxidation processes (AOPs) to break down hazardous substances instead of present techniques that essentially transfer contaminants from wastewater to sludge, a membrane filter, or an adsorbent has attracted interest. Among a variety of AOPs, electrochemical systems are a feasible choice for treating pharmaceutical wastewater. Many electrochemical approaches exist now to remediate rivers polluted by refractory organic contaminants, like pharmaceutical micro-pollutants, which have become a severe environmental problem. The first part of this investigation provides the bibliometric analysis of the title search from 1970 to 2021 for keywords such as wastewater and electrochemical. We have provided information on relations between keywords, countries, and journals based on three fields plot, inter-country co-authorship network analysis, and co-occurrence network visualization. The second part introduces electrochemical water treatment approaches customized to these very distinct discarded flows, containing how processes, electrode materials, and operating conditions influence the results (with selective highlighting cathode reduction and anodic oxidation). This section looks at how electrochemistry may be utilized with typical treatment approaches to improve the integrated system's overall efficiency. We discuss how electrochemical cells might be beneficial and what compromises to consider when putting them into practice. We wrap up our analysis with a discussion of known technical obstacles and suggestions for further research.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Antibacterianos , Técnicas Eletroquímicas , Oxirredução , Preparações Farmacêuticas , Águas Residuárias/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...