Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 31(50): 505205, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-32698175

RESUMO

In this paper, we describe the growth and characterization of ≈530 nm thick superlattices (100 periods) of AlxGa1-xN/AlN (0 ⩽ x ⩽ 0.1) Stranski-Krastanov quantum dots (QDs) for application as the active region of electron-beam pumped ultraviolet lamps. Highly dense (>1011 cm-2) QD layers are deposited by molecular beam epitaxy, and we explore the effect of the III/V ratio during the growth process on their optical performance. The study considers structures emitting in the 244-335 nm range at room temperature, with a relative linewidth in the 6%-11% range, mainly due to the QD diameter dispersion inherent in self-assembled growth. Under electron pumping, the emission efficiency remains constant for acceleration voltages below ≈9 kV. The correlation of this threshold with the total thickness of the SL and the penetration depth of the electron beam confirms the homogeneity of the nanostructures along the growth axis. Below the threshold, the emission intensity scales linearly with the injected current. The internal quantum efficiency (IQE) is characterized at low injection, which reveals the material properties in terms of non-radiative processes, and high injection, which emulates carrier injection in operation conditions. In QDs synthesized with III/V ratio <0.75, the IQE remains around 50% from low injection to pumping power densities as high as 200 kW cm-2, being the first kind of nanostructure that present such stable behaviour.

2.
Nanotechnology ; 29(27): 275702, 2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29648544

RESUMO

In this paper, SiGe nano-heteroepitaxy on Si and SiGe nano-pillars was investigated in a 300 mm industrial reduced pressure-chemical vapour deposition tool. An integration scheme based on diblock copolymer patterning was used to fabricate nanometre-sized templates for the epitaxy of Si and SiGe nano-pillars. Results showed highly selective and uniform processes for the epitaxial growth of Si and SiGe nano-pillars. 200 nm thick SiGe layers were grown on Si and SiGe nano-pillars and characterised by atomic force microscopy, x-ray diffraction and transmission electron microscopy. Smooth SiGe surfaces and full strain relaxation were obtained in the 650 °C-700 °C range for 2D SiGe layers grown either on Si or SiGe nano-pillars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...