Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Mater ; 19(5)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38917828

RESUMO

The increasing prevalence of bone replacements and complications associated with bone replacement procedures underscores the need for innovative tissue restoration approaches. Existing synthetic grafts cannot fully replicate bone vascularization and mechanical characteristics. This study introduces a novel strategy utilizing pectin, chitosan, and polyvinyl alcohol to create interpenetrating polymeric network (IPN) scaffolds incorporated with extracellular vesicles (EVs) isolated from human mesenchymal stem cells (hMSCs). We assess the osteointegration and osteoconduction abilities of these modelsin vitrousing hMSCs and MG-63 osteosarcoma cells. Additionally, we confirm exosome properties through Transmission Electron Microscopy (TEM), immunoblotting, and Dynamic Light Scattering (DLS).In vivo, chick allantoic membrane assay investigates vascularization characteristics. The study did not includein vivoanimal experiments. Our results demonstrate that the IPN scaffold is highly porous and interconnected, potentially suitable for bone implants. EVs, approximately 100 nm in size, enhance cell survival, proliferation, alkaline phosphatase activity, and the expression of osteogenic genes. EVs-mediated IPN scaffolds demonstrate promise as precise drug carriers, enabling customized treatments for bone-related conditions and regeneration efforts. Therefore, the EVs-mediated IPN scaffolds demonstrate promise as precise carriers for the transport of drugs, allowing for customized treatments for conditions connected to bone and efforts in regeneration.


Assuntos
Regeneração Óssea , Proliferação de Células , Vesículas Extracelulares , Células-Tronco Mesenquimais , Osteogênese , Alicerces Teciduais , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Alicerces Teciduais/química , Células-Tronco Mesenquimais/citologia , Animais , Linhagem Celular Tumoral , Transdução de Sinais , Sobrevivência Celular , Engenharia Tecidual/métodos , Quitosana/química , Fosfatase Alcalina/metabolismo , Osseointegração , Polímeros/química , Porosidade
2.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894839

RESUMO

Mesenchymal stem cells derived from rheumatoid arthritis patients (RA-MSCs) provide an understanding of a variety of cellular and immunological responses within the inflammatory milieu. Sustained exposure of MSCs to inflammatory cytokines is likely to exert an influence on genetic variations, including reference genes (RGs). The sensitive effect of cytokines on the reference genes of RA-SF-MSCs may be a variation factor affecting patient-derived MSCs as well as the accuracy and reliability of data. Here, we comparatively evaluated the stability levels of nine RG candidates, namely GAPDH, ACTB, B2M, EEF1A1, TBP, RPLP0, PPIA, YWHAZ, and HPRT1, to find the most stable ones. Alteration of the RG expression was evaluated in MSCs derived from the SF of healthy donors (H-SF-MSCs) and in RA-SF-MSCs using the geNorm and NormFinder software programs. The results showed that TBP, PPIA, and YWHAZ were the most stable RGs for the normalization of H-SF-MSCs and RA-SF-MSCs using RT-qPCR, whereas ACTB, the most commonly used RG, was less stable and performed poorly. Additionally, the sensitivity of RG expression upon exposure to proinflammatory cytokines (TNF-α and IL-1ß) was evaluated. RG stability was sensitive in the H-SF-MSCs exposed to TNF-α and IL-1ß but insensitive in the RA-SF-MSCs. Furthermore, the normalization of IDO expression using ACTB falsely diminished the magnitude of biological significance, which was further confirmed with a functional analysis and an IDO activity assay. In conclusion, the results suggest that TBP, PPIA, and YWHAZ can be used in SF-MSCs, regardless of their exposure to inflammatory cytokines.


Assuntos
Artrite Reumatoide , Células-Tronco Mesenquimais , Humanos , Citocinas/genética , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Líquido Sinovial , Reprodutibilidade dos Testes , Perfilação da Expressão Gênica/métodos , Células-Tronco Mesenquimais/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Padrões de Referência , Reação em Cadeia da Polimerase em Tempo Real/métodos
3.
Neurobiol Dis ; 187: 106293, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37709208

RESUMO

Spastic paraplegia type 11 (SPG11) is a common autosomal recessive form of hereditary spastic paraplegia (HSP) characterized by the degeneration of cortical motor neuron axons, leading to muscle spasticity and weakness. Impaired lipid trafficking is an emerging pathology in neurodegenerative diseases including SPG11, though its role in axonal degeneration of human SPG11 neurons remains unknown. Here, we established a pluripotent stem cell-based SPG11 model by knocking down the SPG11 gene in human embryonic stem cells (hESCs). These stem cells were then differentiated into cortical projection neurons (PNs), the cell types affected in HSP patients, to examine axonal defects and cholesterol distributions. Our data revealed that SPG11 deficiency led to reduced axonal outgrowth, impaired axonal transport, and accumulated swellings, recapitulating disease-specific phenotypes. In SPG11-knockdown neurons, cholesterol was accumulated in lysosome and reduced in plasma membrane, revealing impairments in cholesterol trafficking. Strikingly, the liver-X-receptor (LXR) agonists restored cholesterol homeostasis, leading to the rescue of subsequent axonal defects in SPG11-deficient cortical PNs. To further determine the implication of impaired cholesterol homeostasis in SPG11, we examined the cholesterol distribution in cortical PNs generated from SPG11 disease-mutation knock-in hESCs, and observed a similar cholesterol trafficking impairment. Moreover, LXR agonists rescued the aberrant cholesterol distribution and mitigated the degeneration of SPG11 disease-mutated neurons. Taken together, our data demonstrate impaired cholesterol trafficking underlying axonal degeneration of SPG11 human neurons, and highlight the therapeutic potential of LXR agonists for SPG11 through restoring cholesterol homeostasis.


Assuntos
Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Proteínas/metabolismo , Neurônios/metabolismo , Mutação , Colesterol/metabolismo , Fígado/patologia
4.
Genes (Basel) ; 13(11)2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36360165

RESUMO

Reference genes are crucial in molecular biological studies as an internal control for gene re-search as they exhibit consistent expression patterns across many tissue types. In canines, radiation therapy is the most important therapeutic tool to cure various diseases like cancer. However, when using radiation for therapeutic strategy, radiation exposure to healthy tissues leads to some possible side effects such as acute radiation-induced skin injury and alters gene expression. Therefore, the analysis of a change in reference gene expression during the skin recovery process after radiation therapy is essential in healthy canine tissue. In the present study, we analyzed eight reference genes (ACTB, GAPDH, YWHAZ, GUSB, HPRT1, RPL4, RPS5, and TBP) in canine dermal tissues at 0, 1, 2, 3, 4, 5, 7, and 9 weeks of radiation exposure that affected the skin condition of canines. The stability of reference genes is determined by evaluating radiation therapy's effect on healthy canine dermal tissue. Epidermal marker, Keratin 10 expression varies each week after irradiation, and HPRT1 is found to be the most suitable for normalization of mRNA expression in radiation-exposed canine dermal tissues. Changes in the gene expression level were evaluated by using a reliable tool such as quantitative real-time polymerase chain reaction (qRT-PCR). In order to achieve a valid qRT-PCR result, the most stable reference genes used for normalization after the radiation exposure process are important. Therefore, the current study was designed to evaluate the most stable reference gene for the post-irradiation canine tissues. After radiation exposure, the alternation of reference gene expression was estimated by three algorithms (geNorm, Normfinder, and Bestkeeper). The RG validation programs (GeNorm and NormFinder) suggested that HPRT1, RPL4, and TBP were suitable for normalization in qRT-PCR. Furthermore, three algorithms suggested that HPRT1 was the most stable reference gene for normalization with qRT-PCR results, regardless of before and after radiation exposure. Whereas GAPDH was found to be the most unstable reference gene. In addition, the use of stable or unstable reference genes for the normalization of Keratin 10 expression showed statistical differences. Therefore, we observed that, to obtain accurate and suitable PCR results of the canine tissues with and without radiation exposure, the HPRT1 reference gene is recommended for normalization with its high stability. Additionally, the use of RGs such as HPRT1, RPL4, and TBP for normalization in qRT-PCR experiments is recommended for post-radiation canine tissues to generate more accurate and reliable data. These results will provide fundamental information regarding internal controls for gene expression studies and can be used for the analysis of gene patterns in regenerative medicine.


Assuntos
Algoritmos , Queratina-10 , Cães , Animais , Queratina-10/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Eur J Cell Biol ; 101(3): 151245, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35667339

RESUMO

Mesenchymal stem cells (MSCs) show a decline in pluripotency and differentiation with increased cell culture passages in 2D cultures. The 2D monolayer culture fails to correctly imitate the architecture and microenvironments of in-vivo cell models. Alternatively, 3D culture may improve the simulations of in-vivo cell microenvironments with wide applications in cell culture and drug discovery. In the present study, we compared various 3D culturing techniques such as 3D micro-well (3D-S), hanging drop (HD), and ultra-low attachment (ULA) plate-based spheroid culture to study their effect on morphology, viability, pluripotency, cell surface markers, immunomodulatory factors, and differentiation capabilities of Wharton's jelly-mesenchymal stem cells (WJ-MSCs). The cell morphology, viability, and senescence of 3D cultured WJ-MSCs were comparable to cells in 2D culture. The expression of pluripotency markers (OCT4, SOX2, and NANOG) was enhanced upto 2-8 fold in 3D cultured WJ-MSCs when compared to 2D culture. Moreover, the immunomodulatory factors (IDO, IL-10, LIF, ANG1, and VEGF) were significantly elevated in ULA based 3D cultured WJ-MSCs. Furthermore, significant enhancement in the differentiation potential of WJ-MSCs towards adipocyte (ADP and C/EBP-α), osteocyte (OPN and RUNX2), and definitive endodermal (SOX17, FOXA2, and CXCR4) lineages in 3D culture conditions were observed. Additionally, the osteogenic and adipogenic differentiation potential of WJ-MSCs over the time points 7 days, 14 days, and 28 days was also significantly increased in 3D culture groups. Our study demonstrates that stemness properties of WJ-MSCs were significantly enhanced in 3D cultures and ULA-based culture outperformed other methods with high pluripotency gene expression and enhanced differentiation potential. This study indicates the efficacy of 3D cultures to bridge the gap between 2D cell culture and animal models in regenerative medicine.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Osteogênese , Geleia de Wharton/metabolismo
6.
Biomedicines ; 9(2)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670230

RESUMO

One of the most severe and devastating cancer is pancreatic cancer. Pancreatic ductal adenocarcinoma (PDAC) is one of the major pancreatic exocrine cancer with a poor prognosis and growing prevalence. It is the most deadly disease, with an overall five-year survival rate of 6% to 10%. According to various reports, it has been demonstrated that pancreatic cancer stem cells (PCSCs) are the main factor responsible for the tumor development, proliferation, resistance to anti-cancer drugs, and recurrence of tumors after surgery. PCSCs have encouraged new therapeutic methods to be explored that can specifically target cancer cells. Furthermore, stem cells, especially mesenchymal stem cells (MSCs), are known as influential anti-cancer agents as they function through anti-inflammatory, paracrine, cytokines, and chemokine's action. The properties of MSCs, such as migration to the site of infection and host immune cell activation by its secretome, seem to control the microenvironment of the pancreatic tumor. MSCs secretome exhibits similar therapeutic advantages as a conventional cell-based therapy. Moreover, the potential for drug delivery could be enhanced by engineered MSCs to increase drug bioactivity and absorption at the tumor site. In this review, we have discussed available therapeutic strategies, treatment hurdles, and the role of different factors such as PCSCs, cysteine, GPCR, PKM2, signaling pathways, immunotherapy, and NK-based therapy in pancreatic cancer.

7.
Int J Mol Sci ; 21(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235681

RESUMO

Diabetes is a metabolic disease which affects not only glucose metabolism but also lipid and protein metabolism. It encompasses two major types: type 1 and 2 diabetes. Despite the different etiologies of type 1 and 2 diabetes mellitus (T1DM and T2DM, respectively), the defining features of the two forms are insulin deficiency and resistance, respectively. Stem cell therapy is an efficient method for the treatment of diabetes, which can be achieved by differentiating pancreatic ß-like cells. The consistent generation of glucose-responsive insulin releasing cells remains challenging. In this review article, we present basic concepts of pancreatic organogenesis, which intermittently provides a basis for engineering differentiation procedures, mainly based on the use of small molecules. Small molecules are more auspicious than any other growth factors, as they have unique, valuable properties like cell-permeability, as well as a nonimmunogenic nature; furthermore, they offer immense benefits in terms of generating efficient functional beta-like cells. We also summarize advances in the generation of stem cell-derived pancreatic cell lineages, especially endocrine ß-like cells or islet organoids. The successful induction of stem cells depends on the quantity and quality of available stem cells and the efficient use of small molecules.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Diabetes Mellitus/terapia , Células Secretoras de Insulina/citologia , Bibliotecas de Moléculas Pequenas/farmacologia , Transplante de Células-Tronco , Células-Tronco/efeitos dos fármacos , Animais , Diabetes Mellitus/metabolismo , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...