Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2401702, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567486

RESUMO

Tailor-made materials featuring large tunability in their thermal transport properties are highly sought-after for diverse applications. However, achieving `user-defined' thermal transport in a single class of material system with tunability across a wide range of thermal conductivity values requires a thorough understanding of the structure-property relationships, which has proven to be challenging. Herein, large-scale computational screening of covalent organic frameworks (COFs) for thermal conductivity is performed, providing a comprehensive understanding of their structure-property relationships by leveraging systematic atomistic simulations of 10,750 COFs with 651 distinct organic linkers. Through the data-driven approach, it is shown that by strategic modulation of their chemical and structural features, the thermal conductivity can be tuned from ultralow (≈0.02 W m-1 K-1) to exceptionally high (≈50 W m-1 K-1) values. It is revealed that achieving high thermal conductivity in COFs requires their assembly through carbon-carbon linkages with densities greater than 500 kg m-3, nominal void fractions (in the range of ≈0.6-0.9) and highly aligned polymeric chains along the heat flow direction. Following these criteria, it is shown that these flexible polymeric materials can possess exceptionally high thermal conductivities, on par with several fully dense inorganic materials. As such, the work reveals that COFs mark a new regime of materials design that combines high thermal conductivities with low densities.

2.
Mater Horiz ; 10(12): 5484-5491, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37843868

RESUMO

The ability to dynamically and reversibly control thermal transport in solid-state systems can redefine and propel a plethora of technologies including thermal switches, diodes, and rectifiers. Current material systems, however, do not possess the swift and large changes in thermal conductivity required for such practical applications. For instance, stimuli responsive materials, that can reversibly switch between a high thermal conductivity state and a low thermal conductivity state, are mostly limited to thermal switching ratios in the range of 1.5 to 4. Here, we demonstrate reversible thermal conductivity switching with an unprecedented 18× change in thermal transport in a highly flexible covalent organic framework with revolving imine bonds. The pedal motion of the imine bonds is capable of reversible transformations of the framework from an expanded (low thermal conductivity) to a contracted (high thermal conductivity) phase, which can be triggered through external stimuli such as exposure to guest adsorption and desorption or mechanical strain. We also show that the dynamic imine linkages endow the material with a negative Poisson's ratio, thus marking a regime of materials design that combines low densities with exceptional thermal and mechanical properties.

3.
ACS Appl Mater Interfaces ; 15(22): 26755-26765, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37235795

RESUMO

Resulting from their remarkable structure-property relationships, metal halide perovskites have garnered tremendous attention in recent years for a plethora of applications. For instance, their ultralow thermal conductivities make them promising candidates for thermoelectric and thermal barrier coating applications. It is widely accepted that the "guest" cations inside the metal halide framework act as "rattlers", which gives rise to strong intrinsic phonon resistances, thus explaining the structure-property relationship dictating their ultralow thermal conductivities. In contrast, through systematic atomistic simulations, we show that this conventionally accepted "rattling" behavior is not the mechanism dictating the ultralow thermal conductivities in metal halide perovskites. Instead, we show that the ultralow thermal conductivities in these materials mainly originate from the strongly anharmonic and mechanically soft metal halide framework. By comparing the thermal transport properties of the prototypical fully inorganic CsPbI3 and an empty PbI6 framework, we show that the addition of Cs+ ions inside the nanocages leads to an enhancement in thermal conductivity through vibrational hardening of the framework. Our extensive spectral energy density calculations show that the Cs+ ions have well-defined phase relations with the lattice dynamics of the "host" framework resulting in additional pathways for heat conduction, which is in disagreement with the description of the individual "rattling" of guests inside the framework that has been widely assumed to dictate their ultralow thermal conductivities. Furthermore, we show that an efficient strategy to control the heat transfer efficacy in these materials is through the manipulation of the framework anharmonicity achieved via strain and octahedral tilting. Our work provides the fundamental insights into the lattice dynamics that dictate heat transfer in these novel materials, which will ultimately help guide their further advancement in the next-generation of electronics such as in thermoelectric and photovoltaic applications.

4.
Nano Lett ; 23(2): 491-496, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36598434

RESUMO

We experimentally show that the ballistic length of hot electrons in laser-heated gold films can exceed ∼150 nm, which is ∼50% greater than the previously reported value of 100 nm inferred from pump-probe experiments. We also find that the mean free path of electrons at the peak temperature following interband excitation can reach upward of ∼45 nm, which is higher than the average value of 30 nm predicted from our parameter-free density functional perturbation theory. Our first-principles calculations of electron-phonon coupling reveal that the increase in the mean free path due to interband excitation is a consequence of drastically reduced electron-phonon coupling from lattice stiffening, thus providing the microscopic understanding of our experimental findings.

5.
Mater Horiz ; 9(12): 3087-3094, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36263786

RESUMO

Proper thermal management of solar cells based on metal halide perovskites (MHPs) is key to increasing their efficiency as well as their durability. Although two-dimensional (2D) MHPs possess enhanced thermal stability as compared to their three-dimensional (3D) counterparts, the lack of comprehensive knowledge of the heat transfer mechanisms dictating their ultralow thermal conductivities is a bottleneck for further improvements in their thermal performance. Here, we experimentally and computationally study the Dion-Jacobson (DJ) and Ruddlesden-Popper (RP) phases of MHPs (n = 1) to demonstrate that the length of the organic spacers has a negligible influence on their thermal transport properties; we experimentally measure thermal conductivities of 0.19 ± 0.03 W m-1 K-1 and 0.18 ± 0.03 W m-1 K-1 for the RP and DJ phases with 13.6 Å and 6.3 Å interlayer inorganic separations, respectively. In contrast, we show that thermal conductivity is mainly dependent on the separation between the adjacent organic cations. Decreasing the intermolecular distance (by up to 40%) leads to drastically enhanced overall heat conduction (with monotonically increasing thermal conductivity by more than threefold) which is mainly driven by the vibrational hardening of the organic spacers. Although these 2D layered materials constitute a high density of hybrid organic-inorganic interfaces, our results also show that a substantial portion of heat is conducted through coherent phonon transport and that the thermal conductivity of these materials is not solely limited by incoherent interfacial scattering.

6.
Mater Sci Eng C Mater Biol Appl ; 54: 26-31, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26046264

RESUMO

The development and performance optimization of knitted antibacterial materials made from polyester-silver nanocomposite fibres have been attempted in this research. Inherently antibacterial polyester-silver nanocomposite fibres were blended with normal polyester fibres in different weight proportions to prepare yarns. Three parameters, namely blend percentage (wt.%) of nanocomposite fibres, yarn count and knitting machine gauge were varied for producing a large number of knitted samples. The knitted materials were tested for antibacterial activity against Gram-positive bacteria Staphylococcus aureus. Statistical analysis revealed that all the three parameters were significant and the blend percentage of nanocomposite fibre was the most dominant factor influencing the antibacterial activity of knitted materials. The antibacterial activity of the developed materials was found to be extremely durable as there was only about 1% loss even after 25 washes. Linear programming approach was used to optimize the parameters, namely antibacterial activity, air permeability and areal density of knitted materials considering cost minimization as the objective. The properties of validation samples were found to be very close to the targeted values.


Assuntos
Antibacterianos/química , Nanopartículas Metálicas/química , Nanocompostos/química , Prata/química , Modelos Lineares , Poliésteres/química , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...