Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Nucl Med Mol Imaging ; 49(13): 4516-4528, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35876869

RESUMO

PURPOSE: Zika (ZIKV) is a viral inflammatory disease affecting adults, children, and developing fetuses. It is endemic to tropical and sub-tropical countries, resulting in half the global population at risk of infection. Despite this, there are no approved therapies or vaccines against ZIKV disease. Non-invasive imaging biomarkers are potentially valuable tools for studying viral pathogenesis, prognosticating host response to disease, and evaluating in vivo efficacy of experimental therapeutic interventions. In this study, we evaluated [18F]fluorodeoxyglucose ([18F]FDG)-positron emission tomography (PET) as an imaging biomarker of ZIKV disease in a mouse model and correlated metabolic tracer tissue uptake with real-time biochemical, virological, and inflammatory features of tissue infection. METHODS: [18F]FDG-PET/CT imaging was performed in an acute, lethal ZIKV mouse infection model, at increasing stages of disease severity. [18F]FDG-PET findings were corroborated with ex vivo wholemount-tissue autoradiography and tracer biodistribution studies. Tracer uptake was also correlated with in situ tissue disease status, including viral burden and inflammatory response. Immune profiling of the spleen by flow cytometry was performed to identify the immune cell subsets driving tissue pathology and enhancing tracer uptake in ZIKV disease. RESULTS: Foci of increased [18F]FDG uptake were consistently detected in lymphoid tissues-particularly the spleen-of ZIKV-infected animals. Splenic uptake increased with disease severity, and corroborated findings in tissue pathology. Increased splenic uptake also correlated with increased viral replication and elevated expression of pro-inflammatory cytokines within these tissues. ZIKV-infected spleens were characterized by increased infiltration of myeloid cells, as well as increased proliferation of both myeloid and lymphoid cells. The increased cell proliferation correlated with increased tracer uptake in the spleen. Our findings support the use of [18F]FDG as an imaging biomarker to detect and track ZIKV disease in real time and highlight the dependency of affected tissue on the nature of the viral infection. CONCLUSION: [18F]FDG uptake in the spleen is a useful surrogate for interrogating in situ tissue viral burden and inflammation status in this ZIKV murine model.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Camundongos , Infecção por Zika virus/diagnóstico por imagem , Infecção por Zika virus/metabolismo , Infecção por Zika virus/patologia , Zika virus/metabolismo , Fluordesoxiglucose F18/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Distribuição Tecidual , Tomografia Computadorizada por Raios X , Tomografia por Emissão de Pósitrons , Tecido Linfoide/metabolismo , Tecido Linfoide/patologia , Inflamação/diagnóstico por imagem , Inflamação/metabolismo , Modelos Animais de Doenças , Biomarcadores/metabolismo , Citocinas
2.
Antiviral Res ; 185: 104991, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33279522

RESUMO

In mouse models of dengue virus (DENV) infection, 18F-FDG PET is able to sensitively detect tissue-specific sites of inflammation and disease activity, as well as track therapeutic response to anti- DENV agents. However, the use of 18F-FDG PET to study the pathogenesis of inflammation and disease activity in DENV infection in humans, has not been clinically validated. Here we report the 18F-FDG PET imaging results of two patients during the febrile phase of acute DENV infection, paired with serial serum viral load, NS1 and proinflammatory cytokine measurements. Our findings demonstrate that 18F-FDG PET is able to sensitively detect and quantify organ-specific inflammation in the lymph nodes and spleen, in classic acute dengue fever. This raises the potential for 18F-FDG PET to be used as a research tool that may provide further insights into disease pathogenesis.


Assuntos
Dengue/sangue , Dengue/fisiopatologia , Fluordesoxiglucose F18/metabolismo , Inflamação/fisiopatologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Doença Aguda , Adulto , Convalescença , Citocinas/análise , Dengue/virologia , Feminino , Humanos , Inflamação/imunologia , Linfonodos/patologia , Masculino , Pessoa de Meia-Idade , Baço/patologia , Carga Viral
3.
Int J Mol Sci ; 21(23)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291644

RESUMO

Current methods to detect and monitor pathogens in biological systems are largely limited by the tradeoffs between spatial context and temporal detail. A new generation of molecular tracking that provides both information simultaneously involves in situ detection coupled with non-invasive imaging. An example is antisense imaging that uses antisense oligonucleotide probes complementary to a target nucleotide sequence. In this study, we explored the potential of repurposing antisense oligonucleotides initially developed as antiviral therapeutics as molecular probes for imaging of viral infections in vitro and in vivo. We employed nuclease-resistant phosphorodiamidate synthetic oligonucleotides conjugated with cell-penetrating peptides (i.e., PPMOs) previously established as antivirals for dengue virus serotype-2 (DENV2). As proof of concept, and before further development for preclinical testing, we evaluated its validity as in situ molecular imaging probe for tracking cellular DENV2 infection using live-cell fluorescence imaging. Although the PPMO was designed to specifically target the DENV2 genome, it was unsuitable as in situ molecular imaging probe. This study details our evaluation of the PPMOs to assess specific and sensitive molecular imaging of DENV2 infection and tells a cautionary tale for those exploring antisense oligonucleotides as probes for non-invasive imaging and monitoring of pathogen infections in experimental animal models.


Assuntos
Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/fisiologia , Hibridização In Situ , Imagem Molecular , Morfolinos/química , Peptídeos/química , Replicação Viral/efeitos dos fármacos , Animais , Chlorocebus aethiops , Humanos , Camundongos , Oligonucleotídeos Antissenso , Células Vero
4.
JCI Insight ; 2(9)2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28469088

RESUMO

Development of antiviral therapy against acute viral diseases, such as dengue virus (DENV), suffers from the narrow window of viral load detection in serum during onset and clearance of infection and fever. We explored a biomarker approach using 18F-fluorodeoxyglucose (18F-FDG) PET in established mouse models for primary and antibody-dependent enhancement infection with DENV. 18F-FDG uptake was most prominent in the intestines and correlated with increased virus load and proinflammatory cytokines. Furthermore, a significant temporal trend in 18F-FDG uptake was seen in intestines and selected tissues over the time course of infection. Notably, 18F-FDG uptake and visualization by PET robustly differentiated treatment-naive groups from drug-treated groups as well as nonlethal from lethal infections with a clinical strain of DENV2. Thus, 18F-FDG may serve as a novel DENV infection-associated inflammation biomarker for assessing treatment response during therapeutic intervention trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...