Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(4): 2518-2528, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38226148

RESUMO

Brain-inspired computing systems require a rich variety of neuromorphic devices using multi-functional materials operating at room temperature. Artificial synapses which can be operated using optical and electrical stimuli are in high demand. In this regard, layered materials have attracted a lot of attention due to their tunable energy gap and exotic properties. In the current study, we report the growth of layered MoO3 using the chemical vapor deposition (CVD) technique. MoO3 has an energy gap of 3.22 eV and grows with a large aspect ratio, as seen through optical and scanning electron microscopy. We used transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy for complete characterisation. The two-terminal devices using platinum (Pt/MoO3/Pt) exhibit superior memory with the high-resistance state (HRS) and low-resistance state (LRS) differing by a large resistance (∼MΩ). The devices also show excellent synaptic characteristics. Both optical and electrical pulses can be utilised to stimulate the synapse. Consistent learning (potentiation) and forgetting (depression) curves are measured. Transition from long term depression to long term potentiation can be achieved using the spike frequency dependent pulsing scheme. We have found that the amplification of postsynaptic current can be tuned using such frequency dependent spikes. This will help us to design neuromorphic devices with the required synaptic amplification.

2.
Sci Rep ; 13(1): 7481, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160948

RESUMO

The unprecedented need for data processing in the modern technological era has created opportunities in neuromorphic devices and computation. This is primarily due to the extensive parallel processing done in our human brain. Data processing and logical decision-making at the same physical location are an exciting aspect of neuromorphic computation. For this, establishing reliable resistive switching devices working at room temperature with ease of fabrication is important. Here, a reliable analog resistive switching device based on Au/NiO nanoparticles/Au is discussed. The application of positive and negative voltage pulses of constant amplitude results in enhancement and reduction of synaptic current, which is consistent with potentiation and depression, respectively. The change in the conductance resulting in such a process can be fitted well with double exponential growth and decay, respectively. Consistent potentiation and depression characteristics reveal that non-ideal voltage pulses can result in a linear dependence of potentiation and depression. Long-term potentiation (LTP) and Long-term depression (LTD) characteristics have been established, which are essential for mimicking the biological synaptic applications. The NiO nanoparticle-based devices can also be used for controlled synaptic enhancement by optimizing the electric pulses, displaying typical learning-forgetting-relearning characteristics.

3.
ACS Omega ; 7(38): 33926-33933, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36188247

RESUMO

Identification and evaluation of defect levels in low-dimensional materials is an important aspect in quantum science. In this article, we report a facile synthesis method of low-dimensional hexagonal boron nitride (h-BN) and study light emission characteristics due to the defects. The thermal annealing procedure is optimized to obtain clean multilayered h-BN as revealed by transmission electron microscopy. UV-vis spectroscopy shows the optical energy gap of 5.28 eV, which is comparable to the reported energy gap for exfoliated, clean h-BN samples. X-ray photoelectron spectroscopy reveals the location of the valence band edge at 2 eV. The optimized synthesis route of h-BN generates two kinds of defects, which are characterized using room-temperature photoluminescence (PL) measurements. The defects emit light at 4.18 eV [deep-UV (DUV)] and 3.44 eV (UV) photons. The intensity of PL has an oscillatory dependence on the excitation energy for the defect emitting DUV light. A series of spectral lines are observed with the energy ranging between 2.56 and 3.44 eV. The average peak-to-peak energy separation is about 125 meV. The locations of the spectral lines can be modeled using Franck-Condon-type transition and associated with displaced harmonic oscillator approximation. Our facile route gives an easier approach to prepare clean h-BN, which is essential for classical two-dimensional material-based electronics and single-photon-based quantum devices.

4.
ACS Omega ; 5(37): 23662-23671, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32984686

RESUMO

Moth and butterfly ommatidial nanostructures have been extensively studied for their anti-reflective properties. Especially, from the point of view of sub-wavelength anti-reflection phenomena, the moth eye structures are the archetype example. Here, a comparative analysis of corneal nipples in moth eye (both Male and Female) and butterfly eye (both Male and Female) is given. The surface of moth(Male and Female) and butterfly(Male and Female) eye is defined with regularly arranged hexagonal facets filled with corneal nipples. A detailed analysis using high-resolution scanning electron microscopy images show the intricate hexagonal arrangement of corneal nipples within the individual hexagonal facet. Individual nipples in moth are circular with an average diameter of about 140/165 nm (Male/Female) and average internipple separation of 165 nm. The moth eye show the ordered arrangement of the corneal nipples and the butterfly eye (Male/Female) show an even more complex arrangement of the nipples. Structurally, the corneal nipples in both male and female butterflies are not circular but are polygons with 5, 6, and 7 sides. The average center-to-center separation in the butterfly(Male/Female) is about 260 nm/204 nm, respectively. We find that these corneal nipples are organized into much more dense hexagonal packing with the internipple (edge-to-edge) separation ranging from 20 to 25 nm. Each hexagonal facet is divided into multiple grains separated by boundaries spanning one or two crystallographic defects. These defects are seen in both moth and butterfly. These are typical 5-coordinated and 7-coordinated defect sites typical for a solid-state material with the hexagonal atomic arrangement. Even though the isolated defects are a rarity, interwoven (7-5) defects form a grain boundary between perfectly ordered grains. These defects introduce a low-angle dislocation, and a detailed analysis of the defects is done. The butterfly eye (Male/Female) is defined with extremely high-density corneal nipple with no apparent grains. Each corneal nipple is a polygon with "n" sides (n = 5, 6, and 7). While the 5- and 7-coordinated defects exist, they do not initiate a grain rotation as seen in the moth eyes. To find out the similarity and the difference in the reflectivity of these nanostructured surfaces, we used the effective medium theory and calculated the reflectivity in moth and butterfly eyes. From this simple analysis, we find that females have better anti-reflective properties compared to the males in both moth and butterfly.

5.
Phys Rev Lett ; 106(10): 106101, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21469813

RESUMO

Using scanning tunneling microscopy experiments in combination with first-principles calculations we have studied the geometric structure of the compressed c(7sqrt(2) × sqrt(2)) antiphase domain structure of CO on Cu(001). We find direct evidence for structural relaxations involving an inhomogeneous CO environment characterized by molecular tilting, bending, and nonterminal sites. Our analysis solves the long-standing problem of the adsorption structure of the compressed phase and is important for understanding the physical properties of this fundamental adsorption system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...