Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 30(1): 48-66, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29263085

RESUMO

Inflorescence architecture is a key determinant of yield potential in many crops and is patterned by the organization and developmental fate of axillary meristems. In cereals, flowers and grain are borne from spikelets, which differentiate in the final iteration of axillary meristem branching. In Setaria spp, inflorescence branches terminate in either a spikelet or a sterile bristle, and these structures appear to be paired. In this work, we leverage Setaria viridis to investigate a role for the phytohormones brassinosteroids (BRs) in specifying bristle identity and maintaining spikelet meristem determinacy. We report the molecular identification and characterization of the Bristleless1 (Bsl1) locus in S. viridis, which encodes a rate-limiting enzyme in BR biosynthesis. Loss-of-function bsl1 mutants fail to initiate a bristle identity program, resulting in homeotic conversion of bristles to spikelets. In addition, spikelet meristem determinacy is altered in the mutants, which produce two florets per spikelet instead of one. Both of these phenotypes provide avenues for enhanced grain production in cereal crops. Our results indicate that the spatiotemporal restriction of BR biosynthesis at boundary domains influences meristem fate decisions during inflorescence development. The bsl1 mutants provide insight into the molecular basis underlying morphological variation in inflorescence architecture.


Assuntos
Brassinosteroides/farmacologia , Diferenciação Celular/efeitos dos fármacos , Inflorescência/citologia , Meristema/citologia , Setaria (Planta)/citologia , Alelos , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Loci Gênicos , Inflorescência/efeitos dos fármacos , Inflorescência/ultraestrutura , Meristema/efeitos dos fármacos , Modelos Biológicos , Mutação/genética , Fenótipo , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Setaria (Planta)/efeitos dos fármacos , Setaria (Planta)/genética , Setaria (Planta)/ultraestrutura , Transdução de Sinais/efeitos dos fármacos
2.
Plant Genome ; 9(2)2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27898826

RESUMO

Plant tillering and related traits are morphologically important components contributing to switchgrass ( L.) biomass yield. The objectives of this study were to estimate broad-sense heritabilities for tillering-related traits, to analyze correlations between biomass yield and the traits, and to identify quantitative trait loci (QTL) for them. A first-generation selfed population of NL94 plant and a hybrid population between NL94 and SL93 plants were field established in a randomized complete block design with three replications in Stillwater and Perkins, OK. Phenotypic data were collected in 2 yr and genotypic data were obtained by genotyping simple-sequence repeat (SSR) markers in the two populations on the basis of two preexisting genetic maps. Plant base size (PBS), plant girth (PG), tillering ability (TA), tiller diameter (TD), and tiller dry weight (TDW) were positively correlated with biomass yield in both populations. Consistently, PBS had the largest correlation coefficients for biomass yield, suggesting its value as an indirect selection criterion for biomass yield. Twenty and 26 QTL for six tillering-related traits were detected in the hybrid and selfed population, respectively. Among the QTL, one on linkage group (LG) 5a between sww-2387/PVCAG-2197/2198 and PVGA-1649/1650 for PBS, PG, and TA and another on LG 2a between sww-2640/sww-2545 and PVCA-765/766 for TD and TDW were stably detected in multiple environments in the two populations. The findings add to the knowledge base regarding the genetics of tillering-related traits that could be used in accelerating the development of high-yielding cultivars through marker-assisted selection.


Assuntos
Mapeamento Cromossômico , Panicum/genética , Caules de Planta/genética , Locos de Características Quantitativas/genética , Meio Ambiente , Ligação Genética , Fenótipo , Melhoramento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...