Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1367656, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550616

RESUMO

Amoebae are micropredators that play an important role in controlling fungal populations in ecosystems. However, the interaction between fungi and their amoebic predators suggests that the pressure from predatory selection can significantly influence the development of fungal virulence and evolutionary processes. Thus, the purpose of this study was to investigate the adaptation of saprotrophic Candida albicans strains during their interactions with Acanthamoeba castellanii. We conducted a comprehensive analysis of survival after co-culture by colony counting of the yeast cells and examining yeast cell phenotypic and genetic characteristics. Our results indicated that exposure to amoebae enhanced the survival capacity of environmental C. albicans and induced visible morphological alterations in C. albicans, particularly by an increase in filamentation. These observed phenotypic changes were closely related to concurrent genetic variations. Notably, mutations in genes encoding transcriptional repressors (TUP1 and SSN6), recognized for their negative regulation of filamentous growth, were exclusively identified in amoeba-passaged isolates, and absent in unexposed isolates. Furthermore, these adaptations increased the exposed isolates' fitness against various stressors, simultaneously enhancing virulence factors and demonstrating an increased ability to invade A549 lung human epithelial cells. These observations indicate that the sustained survival of C. albicans under ongoing amoebic predation involved a key role of mutation events in microevolution to modulate the ability of these isolates to change phenotype and increase their virulence factors, demonstrating an enhanced potential to survive in diverse environmental niches.


Assuntos
Amoeba , Candida albicans , Humanos , Virulência/genética , Ecossistema , Fatores de Virulência , Mutação , Fenótipo
2.
Front Cell Infect Microbiol ; 13: 1163868, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705932

RESUMO

Talaromyces (Penicillium) marneffei (TM) is an important, but neglected, thermally dimorphic fungus. It is the pathogenic cause of talaromycosis, which is strongly associated with the immunodeficiency state present in individuals with advanced HIV disease. The purpose of this study was to develop a sandwich enzyme-linked immunosorbent assay (sandwich ELISA) for the detection of T. marneffei cytoplasmic yeast antigen (TM CYA) in human urine. Monoclonal antibody (MAb) 4D1 specifically binds to TM CYA. Galanthus nivalis agglutinin (GNA), a mannose -binding lectin, recognizes and binds to mannose residues of TM CYA. For the sandwich ELISA, the microplate was coated with GNA as the capturing molecule for absorbing immune complexes of MAb 4D1-TM CYA. The MAb 4D1-GNA sandwich ELISA did not detect a cross-reaction with other antigens from other fungi or bacteria. Seventy-four urine samples from patients with blood culture -confirmed talaromycosis and 229 urine samples from people without talaromycosis residing in the endemic area were subjected to the MAb 4D1-GNA sandwich ELISA. At an optical density (OD) cutoff value of 0.356, the sensitivity was 89.19% [95% confidence interval (CI): 79.80% -95.22%]; the specificity was 98.69% (95% CI: 96.22% -99.73%). The diagnostic performance of the MAb 4D1-GNA sandwich ELISA was highly consistent with those of blood culture and the Platelia Aspergillus galactomannan (GM) ELISA kit. Collectively, the MAb 4D1-GNA sandwich ELISA is a promising technique for the rapid diagnosis of T. marneffei infection, which would facilitate the early treatment of patients with talaromycosis and it may be used to monitor treatment responses.


Assuntos
Saccharomyces cerevisiae , Talaromyces , Humanos , Anticorpos Monoclonais , Manose , Ensaio de Imunoadsorção Enzimática , Anticorpos Antifúngicos
3.
Front Immunol ; 14: 1192326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457708

RESUMO

Pathogenic eukaryotes including fungi release extracellular vesicles (EVs) which are composed of a variety of bioactive components, including peptides, nucleic acids, polysaccharides, and membrane lipids. EVs contain virulence-associated molecules suggesting a crucial role of these structures in disease pathogenesis. EVs derived from the pathogenic yeast phase of Talaromyces (Penicillium) marneffei, a causative agent of systemic opportunistic mycoses "talaromycosis," were studied for their immunogenic components and immunomodulatory properties. Some important virulence factors in EVs including fungal melanin and yeast phase specific mannoprotein were determined by immunoblotting. Furthermore, fluorescence microscopy revealed that T. marneffei EVs were internalized by THP-1 human macrophages. Co-incubation of T. marneffei EVs with THP-1 human macrophages resulted in increased levels of supernatant interleukin (IL)-1ß, IL-6 and IL-10. The expression of THP-1 macrophage surface CD86 was significantly increased after exposed to T. marneffei EVs. These findings support the hypothesis that fungal EVs play an important role in macrophage "classical" M1 polarization. T. marneffei EVs preparations also increased phagocytosis, suggesting that EV components stimulate THP-1 macrophages to produce effective antimicrobial compounds. In addition, T. marneffei EVs stimulated THP-1 macrophages were more effective at killing T. marneffei conidia. These results indicate that T. marneffei EVs can potently modulate macrophage functions, resulting in the activation of these innate immune cells to enhance their antimicrobial activity.


Assuntos
Vesículas Extracelulares , Talaromyces , Humanos , Saccharomyces cerevisiae , Macrófagos , Vesículas Extracelulares/metabolismo
4.
Mycoses ; 66(6): 540-549, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36840378

RESUMO

BACKGROUND: Malassezia furfur is a member of the human skin microbiomes that can cause various skin diseases. Dimorphism plays a role as the yeast phase predominates during skin colonisation whereas mycelial forms are observed in the scales of patients with pityriasis versicolor (PV). However, due to their condition-dependence for growth, it is difficult to culture M. furfur and this is an additional challenge for studying the pathogenicity of this fungus. OBJECTIVE: To describe different media suitable for culturing Malassezia from the yeast phase into mycelial forms, with a particular focus on nutritional supplements and pH conditions. METHODS: Clinical M. furfur isolates from patients with PV and healthy individuals were used to investigate Malassezia dimorphism as well as the activity and expression of lipase enzymes. RESULTS: Our experimental media were significantly more likely to promote mycelial growth in strains from healthy individuals compared to those from patients with PV. Lipase activity was increased in the mycelial phase cells compared to yeast forms for all strains tested. Assessment of the relative transcriptional expression of lipase within M. furfur revealed that LIP-coding genes were upregulated in mycelium relative to yeast forms for the strains tested. However, the increases in LIP3, LIP5 and LIP6 gene expressions were significantly greater in strains from healthy individuals compared to those from patients with PV. CONCLUSION: Overall, this study validated effective growth conditions to study M. furfur virulence factors and demonstrated that lipase is associated with M. furfur dimorphism.


Assuntos
Malassezia , Tinha Versicolor , Humanos , Tinha Versicolor/microbiologia , Lipase/genética , Lipase/metabolismo , Virulência , Saccharomyces cerevisiae , Caracteres Sexuais
5.
Pathogens ; 11(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36558799

RESUMO

Talaromyces marneffei, a dimorphic fungus, exhibits temperature-dependent growth, existing in a filamentous form at 25 °C and as a yeast at 37 °C. Several studies have highlighted the important roles of macrophages in defense against T. marneffei infection. However, the immune responses to the interaction of macrophages with T. marneffei cells during phase transition require further investigation. This study reports the expression of cytokine profiles in human THP-1 cells during infection by T. marneffei. THP-1 cells were infected with T. marneffei conidia at different multiplicity of infections (MOIs). Surviving conidia transformed into yeasts after phagocytosis by macrophages, and the number of yeasts gradually increased over 36 h. The transcription and secretion levels of pro- and anti-inflammatory cytokines were examined at different times by qRT-PCR and ELISA. Transcription levels of IL-8, IL-12, IL-1ß, and TNF-α increased significantly at 12 or 24 h and then slightly decreased at 36 h. In contrast, the transcription levels of IL-6, IL-10, and TGF-ß gradually increased at all MOIs. The levels of IL-6 and IL-10 secretion corresponded to their levels of transcription. These results indicated that as the number of intracellular yeasts increased, the infected macrophages first underwent slight M1 polarization before shifting to M2 polarization. This polarization transition was confirmed by the fungicidal ability and the expression of macrophage surface markers. By inducing the M2-type polarization of macrophages, the intracellular T. marneffei cells can successfully evade the immune response. Our study provides a novel insight into the immune characterization during the transition of T. marneffei infection and could further contribute to possible diagnostic and therapeutic interventions for this infection.

6.
Front Cell Infect Microbiol ; 12: 1023067, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262181

RESUMO

Talaromyces (Penicillium) marneffei is an important dimorphic mycosis endemic in Southeast Asia and Southern China, but the origin and maintenance of virulence traits in this organism remains obscure. Several pathogenic fungi, including Cryptococcus neoformans, Aspergillus fumigatus, Blastomyces dermatitidis, Sporothrix schenckii, Histoplasma capsulatum and Paracoccidioides spp. interact with free living soil amoebae and data suggests that fungal pathogenic strategies may emerge from environmental interactions of these fungi with ubiquitous phagocytic microorganisms. In this study, we examined the interactions of T. marneffei with the soil amoeba Acanthamoeba castellanii. T. marneffei was rapidly ingested by A. castellanii and phagocytosis of fungal cells resulted in amoeba death after 24 h of contact. Co-culture also resulted in a rapid transition for conidia to the fission-yeast form. In addition, well-established virulence factors such as melanin and a yeast specific mannoprotein of T. marneffei were expressed during interaction with A. castellanii at 37°C. Our findings support the assumption that soil amoebae environmental predators play a role in the selection and maintenance of particular features in T. marneffei that impart virulence to this clinically important dimorphic fungus in mammalian hosts.


Assuntos
Amoeba , Talaromyces , Animais , Solo , Saccharomyces cerevisiae , Melaninas , Fatores de Virulência , Mamíferos
7.
Front Pharmacol ; 12: 723727, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489710

RESUMO

In this study, we describe a nano-carrier system for propolis that is able to cross an in vitro model of the blood-brain barrier (BBB) and effectively reduce the virulence of Cryptococcus neoformans in animal models. Antimicrobial properties of propolis have been widely studied. However, propolis applications are limited by its low water solubility and poor bioavailability. Therefore, we recently formulated novel poly (n-butyl cyanoacrylate) nanoparticles (PBCA-NP) containing propolis. PBCA-NP are biocompatible, biodegradable and have been shown to effectively cross the BBB using apolipoprotein E (ApoE) as a ligand. Prepared nanoparticles were characterized for particle size, zeta potential, propolis entrapment efficiency and in vitro release. Additionally, the PBCA-NP were functionalized with polysorbate 80, which then specifically adsorbs ApoE. Using an in vitro BBB model of human brain microvascular endothelial cells hCMEC/D3, it was shown that fluorescence labelled ApoE-functionalized PBCA-NP were internalized by the cells and translocated across the cell monolayer. Propolis-loaded PBCA-NP had in vitro, antifungal activity against C. neoformans, which causes meningitis. To utilize the invertebrate model, Galleria mellonella larvae were infected with C. neoformans and treated with propolis-loaded PBCA-NP. The larvae exhibited normal behavior in toxicity testing, and treatment with propolis-loaded PBCA-NP increased survival in the C. neoformans-infected larvae group. In addition, following cryptococcal infection and then 7 days of treatment, the tissue fungal burden of mice treated with propolis-loaded PBCA-NP was significantly lower than control groups. Therefore, our ApoE-functionalized propolis-loaded PBCA-NP can be deemed as a potential targeted nanoparticle in the therapeutic treatment of cerebral cryptococcosis.

8.
J Fungi (Basel) ; 7(9)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34575791

RESUMO

Invasive pulmonary aspergillosis is a frequent complication in immunocompromised individuals, and it continues to be an important cause of mortality in patients undergoing hematopoietic stem cell transplantation. In addition to antifungal therapy used for mycoses, immune-modulatory molecules such as cytokines and chemokines can modify the host immune response and exhibit a promising form of antimicrobial therapeutics to combat invasive fungal diseases. Cytokine and chemokine profiles may also be applied as biomarkers during fungal infections and clinical research has demonstrated different activation patterns of cytokines in invasive mycoses such as aspergillosis. In this review, we summarize different aspects of cytokines that have been described to date and provide possible future directions in research on invasive pulmonary aspergillosis following hematopoietic stem cell transplantation. These findings suggest that cytokines and chemokines may serve as useful biomarkers to improve diagnosis and monitoring of infection.

9.
Antibiotics (Basel) ; 9(7)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709077

RESUMO

Cryptococcus neoformans, a life-threatening human yeast pathogen, has the ability to produce melanin, which is one of the common virulence factors contributing to cryptococcal pathogenesis. This virulence factor is closely associated with the cryptococcal cell wall, specifically chitin and chitosan polysaccharides, a complex structure that is essential for maintaining cellular structure and integrity. In this study, we aim to investigate the effects of two stingless bee (SLB) propolis from Tetragonula laeviceps and Tetrigona melanoleuca against cell wall-associated melanin in C. neoformans, and its immune response in RAW 264.7 macrophage. The ethanolic extract of SLB propolis (EEP) has strongly exhibited anti-cryptococcal activity. Moreover, EEP from both sources reduced chitin/chitosan and melanin production against C. neoformans in a dose-dependent manner. Likewise, the mRNA expression level of CDA1, IPC1-PKC1 and LAC1 genes involved in the cryptococcal melanization pathway was significantly decreased at 2 mg/mL in EEP treatment. Additionally, pretreatment with EEP prior to yeast infection dramatically reduced intracellular replication of C. neoformans in RAW 264.7 macrophages in a dose-dependent manner. This study might be a new insight to use a natural powerful source, not only acting to target cell wall-associated molecules, but also being capable to explore a novel strategy by which dysregulation of these molecules leads to promote immunomodulatory activity.

10.
Artigo em Inglês | MEDLINE | ID: mdl-31871479

RESUMO

Propolis is a natural substance and consists of bioactive compounds, which gives it antioxidant and antimicrobial properties. However, the use of propolis is limited by the low solubility in aqueous solutions. Thus, nanoparticles may be likely to accomplish enhanced delivery of poorly water-soluble phytomedicine. The aim of the present study was to fabricate and evaluate the biological activity of ethanolic extract of propolis-loaded poly(lactic-co-glycolic acid) nanoparticles (EEP-NPs). The EEP-NPs were prepared using the oil-in-water (o/w) single-emulsion solvent evaporation technique. The physicochemical properties of EEP-NPs were characterized and tested on their cytotoxicity, antifungal activity, and impact on key virulence factors that contribute to pathogenesis of C. albicans. EEP-NPs were successfully synthesized and demonstrated higher antifungal activity than EEP in free form. Moreover, EEP-NPs exhibited less cytotoxicity on Vero cells and suppressed the virulence factors of C. albicans, including adhesion, hyphal germination, biofilm formation, and invasion. Importantly, EEP-NPs exhibited a statistical decrease in the expression of hyphal adhesion-related genes, ALS3 and HWP1, of C. albicans. The results of this study revealed that EEP-NPs mediates a potent anticandidal activity and key virulence factors by reducing the gene-encoding virulence-associated hyphal- adhesion proteins of C. albicans and, thereby, disrupting the morphologic presence and attenuating their virulence.

11.
Microb Pathog ; 123: 296-303, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30041002

RESUMO

The present study was conducted to investigate the effects of a natural product from honeybees, named propolis, against Cryptococcus neoformans and its effect in the expression of putative virulence factors, such as capsular polysaccharides, melanin production and urease enzyme. Ethanol extract propolis (EEP) was first tested for its anti-cryptococcal activity and explored its impact on virulence factors in both phenotypes and enzyme activities. Moreover, the cryptococcal virulence genes were investigated using real time RT-PCR. The MIC value of EEP, 1 mg ml-1, displayed potent inhibition of C. neoformans cell viability. Of note is the high efficacy of sub-MIC concentrations (ranging from 0.5 to 0.125 mg ml-1) in decreasing the production of capsule, melanin, as well as laccase and urease enzyme activities. Importantly, EEP exhibited statistically decrease in the expression of gene-encoded virulence factors. In conclusion, EEP mediates C. neoformans growth inhibition and virulence factors by reducing the gene-encoding virulence-associated proteins and, thereby, disrupting the morphologic presence and attenuating their virulence. This study introduced EEP as regards anti-cryptococcal virulence factors activities; therefore, EEP would provide alternative ways of controlling the pathogenicity.


Assuntos
Antifúngicos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Própole/farmacologia , Fatores de Virulência/metabolismo , Animais , Antifúngicos/química , Abelhas/química , Criptococose/tratamento farmacológico , Cryptococcus neoformans/citologia , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Cápsulas Fúngicas/efeitos dos fármacos , Polissacarídeos Fúngicos/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Cinética , Lacase/metabolismo , Melaninas/metabolismo , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Fenótipo , Própole/química , Tailândia , Urease/metabolismo , Virulência/efeitos dos fármacos , Virulência/genética , Fatores de Virulência/genética
12.
J Cancer ; 6(3): 276-86, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25663946

RESUMO

Extracellular matrix metalloproteinase inducer (EMMPRIN) is a human leukocyte surface molecule that is enriched on the surface of many cancer cells, and it plays an important role in proliferation and metastasis. In this study, we utilized the chimeric adenoviral vector Ad5/F35 carrying gene encoding scFv against EMMPRIN (scFv-M6-1B9) to down-regulate EMMPRIN cell surface expression and investigated programmed cell death response in colorectal cancer (CRC) cell, Caco-2. The scFv-M6-1B9 intrabody exhibits robust activity in reducing EMMPRIN cell surface expression. This approach led to the inducing of apoptosis, which was relative to the increasing of apoptotic bodies in sub-G1 peak, phosphatidylserine externalization, as well as TUNEL-positive cells. In addition, real-time RT-PCR and western blotting analysis indicated that apoptosis was enhanced through the mitochondrial pathway, a marked reduction of Bcl-2, leading to the translocation of cytochrome c and also the dramatic activation of caspase-3. Moreover, carcinoembryonic antigen (CEA), a tumor marker for CRC, was found to have significantly diminished in both secreted protein and mRNA levels. In conclusion, these findings suggest that EMMPRIN down-regulation by scFv-M6-1B9 intrabody has great potential in enhancing the efficacy of apoptosis induction through the mitochondrial pathway and in effecting a decline in the CEA level. Thus, its benefits could be applied to project the future prospects for targeted gene therapy and therapeutic application in monitoring colorectal cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...