Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(48): e2306723120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37956437

RESUMO

Anthropogenic climate change has significantly altered the flowering times (i.e., phenology) of plants worldwide, affecting their reproduction, survival, and interactions. Recent studies utilizing herbarium specimens have uncovered significant intra- and inter-specific variation in flowering phenology and its response to changes in climate but have mostly been limited to animal-pollinated species. Thus, despite their economic and ecological importance, variation in phenological responses to climate remain largely unexplored among and within wind-pollinated dioecious species and across their sexes. Using both herbarium specimens and volunteer observations of cottonwood (Populus) species, we examined how phenological sensitivity to climate varies across species, their ranges, sexes, and phenophases. The timing of flowering varied significantly across and within species, as did their sensitivity to spring temperature. In particular, male flowering generally happened earlier in the season and was more sensitive to warming than female flowering. Further, the onset of flowering was more sensitive to changes in temperature than leaf out. Increased temporal gaps between male and female flowering time and between the first open flower date and leaf out date were predicted for the future under two climate change scenarios. These shifts will impact the efficacy of sexual reproduction and gene flow among species. Our study demonstrates significant inter- and intra-specific variation in phenology and its responses to environmental cues, across species' ranges, phenophases, and sex, in wind-pollinated species. These variations need to be considered to predict accurately the effects of climate change and assess their ecological and evolutionary consequences.


Assuntos
Flores , Reprodução , Humanos , Animais , Flores/fisiologia , Folhas de Planta , Sexo , Plantas , Mudança Climática , Estações do Ano , Temperatura
2.
New Phytol ; 236(2): 760-773, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35801834

RESUMO

Plant-pollinator mutualisms rely upon the synchrony of interacting taxa. Climate change can disrupt this synchrony as phenological responses to climate vary within and across species. However, intra- and interspecific variation in phenological responses is seldom considered simultaneously, limiting our understanding of climate change impacts on interactions among taxa across their ranges. We investigated how variation in phenological sensitivity to climate can alter ecological interactions simultaneously within and among species using natural history collections and citizen science data. We focus on a unique system, comprising a wide-ranged spring ephemeral with varying color morphs (Claytonia virginica) and its specialist bee pollinator (Andrena erigeniae). We found strongly opposing trends in the phenological sensitivities of plants vs their pollinators. Flowering phenology was more sensitive to temperature in warmer regions, whereas bee phenology was more responsive in colder regions. Phenological sensitivity varied across flower color morphs. Temporal synchrony between flowering and pollinator activity was predicted to change heterogeneously across the species' ranges in the future. Our work demonstrates the complexity and fragility of ecological interactions in time and the necessity of incorporating variation in phenological responses across multiple axes to understand how such interactions will change in the future.


Assuntos
Mudança Climática , Flores , Animais , Abelhas , Flores/fisiologia , Plantas , Reprodução , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...