Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alzheimers Res Ther ; 16(1): 6, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212815

RESUMO

BACKGROUND: Repeated sessions of training and non-invasive brain stimulation have the potential to enhance cognition in patients with cognitive impairment. We hypothesized that combining cognitive training with anodal transcranial direct current stimulation (tDCS) will lead to performance improvement in the trained task and yield transfer to non-trained tasks. METHODS: In our randomized, sham-controlled, double-blind study, 46 patients with cognitive impairment (60-80 years) were randomly assigned to one of two interventional groups. We administered a 9-session cognitive training (consisting of a letter updating and a Markov decision-making task) over 3 weeks with concurrent 1-mA anodal tDCS over the left dorsolateral prefrontal cortex (20 min in tDCS, 30 s in sham group). Primary outcome was trained task performance (letter updating task) immediately after training. Secondary outcomes included performance in tasks testing working memory (N-back task), decision-making (Wiener Matrices test) and verbal memory (verbal learning and memory test), and resting-state functional connectivity (FC). Tasks were administered at baseline, at post-assessment, and at 1- and 7-month follow-ups (FU). MRI was conducted at baseline and 7-month FU. Thirty-nine participants (85%) successfully completed the intervention. Data analyses are reported on the intention-to-treat (ITT) and the per-protocol (PP) sample. RESULTS: For the primary outcome, no difference was observed in the ITT (ß = 0.1, 95%-CI [- 1.2, 1.3, p = 0.93] or PP sample (ß = - 0.2, 95%-CI [- 1.6, 1.2], p = 0.77). However, secondary analyses in the N-back working memory task showed that, only in the PP sample, the tDCS outperformed the sham group (PP: % correct, ß = 5.0, 95%-CI [- 0.1, 10.2], p = 0.06, d-prime ß = 0.2, 95%-CI [0.0, 0.4], p = 0.02; ITT: % correct, ß = 3.0, 95%-CI [- 3.9, 9.9], p = 0.39, d-prime ß = 0.1, 95%-CI [- 0.1, 0.3], p = 0.5). Frontoparietal network FC was increased from baseline to 7-month FU in the tDCS compared to the sham group (pFDR < 0.05). Exploratory analyses showed a correlation between individual memory improvements and higher electric field magnitudes induced by tDCS (ρtDCS = 0.59, p = 0.02). Adverse events did not differ between groups, questionnaires indicated successful blinding (incidence rate ratio, 1.1, 95%-CI [0.5, 2.2]). CONCLUSIONS: In sum, cognitive training with concurrent brain stimulation, compared to cognitive training with sham stimulation, did not lead to superior performance enhancements in patients with cognitive impairment. However, we observed transferred working memory benefits in patients who underwent the full 3-week intervention. MRI data pointed toward a potential intervention-induced modulation of neural network dynamics. A link between individual performance gains and electric fields suggested dosage-dependent effects of brain stimulation. Together, our findings do not support the immediate benefit of the combined intervention on the trained function, but provide exploratory evidence for transfer effects on working memory in patients with cognitive impairment. Future research needs to explore whether individualized protocols for both training and stimulation parameters might further enhance treatment gains. TRIAL REGISTRATION: The study is registered on ClinicalTrials.gov (NCT04265378). Registered on 7 February 2020. Retrospectively registered.


Assuntos
Disfunção Cognitiva , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Treino Cognitivo , Memória de Curto Prazo/fisiologia , Disfunção Cognitiva/terapia , Método Duplo-Cego , Encéfalo , Córtex Pré-Frontal
2.
Nat Commun ; 14(1): 3184, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268628

RESUMO

The combination of repeated behavioral training with transcranial direct current stimulation (tDCS) holds promise to exert beneficial effects on brain function beyond the trained task. However, little is known about the underlying mechanisms. We performed a monocenter, single-blind randomized, placebo-controlled trial comparing cognitive training to concurrent anodal tDCS (target intervention) with cognitive training to concurrent sham tDCS (control intervention), registered at ClinicalTrial.gov (Identifier NCT03838211). The primary outcome (performance in trained task) and secondary behavioral outcomes (performance on transfer tasks) were reported elsewhere. Here, underlying mechanisms were addressed by pre-specified analyses of multimodal magnetic resonance imaging before and after a three-week executive function training with prefrontal anodal tDCS in 48 older adults. Results demonstrate that training combined with active tDCS modulated prefrontal white matter microstructure which predicted individual transfer task performance gain. Training-plus-tDCS also resulted in microstructural grey matter alterations at the stimulation site, and increased prefrontal functional connectivity. We provide insight into the mechanisms underlying neuromodulatory interventions, suggesting tDCS-induced changes in fiber organization and myelin formation, glia-related and synaptic processes in the target region, and synchronization within targeted functional networks. These findings advance the mechanistic understanding of neural tDCS effects, thereby contributing to more targeted neural network modulation in future experimental and translation tDCS applications.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Idoso , Estimulação Transcraniana por Corrente Contínua/métodos , Treino Cognitivo , Método Simples-Cego , Técnicas Estereotáxicas , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Método Duplo-Cego
3.
Neuroscience ; 526: 61-73, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37321368

RESUMO

Executive functions, essential for daily life, are known to be impaired in older age. Some executive functions, including working memory updating and value-based decision-making, are specifically sensitive to age-related deterioration. While their neural correlates in young adults are well-described, a comprehensive delineation of the underlying brain substrates in older populations, relevant to identify targets for modulation against cognitive decline, is missing. Here, we assessed letter updating and Markov decision-making task performance to operationalize these trainable functions in 48 older adults. Resting-state functional magnetic resonance imaging was acquired to quantify functional connectivity (FC) in task-relevant frontoparietal and default mode networks. Microstructure in white matter pathways mediating executive functions was assessed with diffusion tensor imaging and quantified by tract-based fractional anisotropy (FA). Superior letter updating performance correlated with higher FC between dorsolateral prefrontal cortex and left frontoparietal and hippocampal areas, while superior Markov decision-making performance correlated with decreased FC between basal ganglia and right angular gyrus. Furthermore, better working memory updating performance was related to higher FA in the cingulum bundle and the superior longitudinal fasciculus. Stepwise linear regression showed that cingulum bundle FA added significant incremental contribution to the variance explained by fronto-angular FC alone. Our findings provide a characterization of distinct functional and structural connectivity correlates associated with performance of specific executive functions. Thereby, this study contributes to the understanding of the neural correlates of updating and decision-making functions in older adults, paving the way for targeted modulation of specific networks by modulatory techniques such as behavioral interventions and non-invasive brain stimulation.


Assuntos
Função Executiva , Substância Branca , Adulto Jovem , Humanos , Idoso , Função Executiva/fisiologia , Imagem de Tensor de Difusão , Encéfalo/fisiologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Memória de Curto Prazo/fisiologia , Mapeamento Encefálico , Imageamento por Ressonância Magnética
4.
Elife ; 122023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37141113

RESUMO

Although late-life depression (LLD) is a serious health problem and more common than dementia in people over 60, it is underdiagnosed and undertreated. The cognitive-emotional etiology of LLD is particularly poorly understood. This is in contrast to the now extensive literature from psychology and cognitive neuroscience on the characteristics of emotionally healthy aging. This research consistently shows a change in emotional processing in older adults that is modulated by prefrontal regulation. Lifespan theories explain this change in terms of neurocognitive adaptation to limited opportunities and resources that typically occur in the second half of life. Epidemiological data on an increase in well-being after a low point around age 50 suggest that the majority of people seem quite capable of making this adaptation, even though empirical evidence for a causal modulation of this so called 'paradox of aging' and for the role of the midlife dip is still lacking. Intriguingly, LLD is associated with deficits in emotional, cognitive, and prefrontal functions similar to those shown to be crucial for healthy adaptation. Suspected causes of these deficits, such as white matter lesions or affective instability, become apparent as early as midlife when internal and external changes as well as daily challenges set in. Based on these findings, we propose that some individuals who develop depression at older ages may not have been able to successfully implement self-regulatory adaptation at midlife. Here, we review the current evidence and theories on successful aging, the neurobiology of LLD, and well-being across the lifespan. Drawing on recent advances in lifespan theories, emotion regulation research, and cognitive neuroscience, we propose a model of successful versus unsuccessful adaptation that emphasizes the increasing need for implicit habitual control and resource-based regulatory choice during midlife.


Assuntos
Depressão , Saúde Mental , Humanos , Idoso , Pessoa de Meia-Idade , Emoções/fisiologia , Envelhecimento
6.
BMJ Open ; 12(6): e059943, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688585

RESUMO

INTRODUCTION: With the worldwide increase of life expectancy leading to a higher proportion of older adults experiencing age-associated deterioration of cognitive abilities, the development of effective and widely accessible prevention and therapeutic measures has become a priority and challenge for modern medicine. Combined interventions of cognitive training and transcranial direct current stimulation (tDCS) have shown promising results for counteracting age-associated cognitive decline. However, access to clinical centres for repeated sessions is challenging, particularly in rural areas and for older adults with reduced mobility, and lack of clinical personnel and hospital space prevents extended interventions in larger cohorts. A home-based and remotely supervised application of tDCS would make the treatment more accessible for participants and relieve clinical resources. So far, studies assessing feasibility of combined interventions with a focus on cognition in a home-based setting are rare. With this study, we aim to provide evidence for the feasibility and the effects of a multisession home-based cognitive training in combination with tDCS on cognitive functions of healthy older adults. METHODS AND ANALYSIS: The TrainStim-Home trial is a monocentric, randomised, double-blind, placebo-controlled study. Thirty healthy participants, aged 60-80 years, will receive 2 weeks of combined cognitive training and anodal tDCS over left dorsolateral prefrontal cortex (target intervention), compared with cognitive training plus sham stimulation. The cognitive training will comprise a letter updating task, and the participants will be stimulated for 20 min with 1.5 mA. The intervention sessions will take place at the participants' home, and primary outcome will be the feasibility, operationalised by two-thirds successfully completed sessions per participant. Additionally, performance in the training task and an untrained task will be analysed. ETHICS AND DISSEMINATION: Ethical approval was granted by the ethics committee of the University Medicine Greifswald. Results will be available through publications in peer-reviewed journals and presentations at national and international conferences. TRIAL REGISTRATION NUMBER: NCT04817124.


Assuntos
Transtornos Cognitivos , Estimulação Transcraniana por Corrente Contínua , Idoso , Cognição , Método Duplo-Cego , Estudos de Viabilidade , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Estimulação Transcraniana por Corrente Contínua/métodos
7.
Hum Brain Mapp ; 43(11): 3416-3426, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35373873

RESUMO

Neural mechanisms of behavioral improvement induced by repeated transcranial direct current stimulation (tDCS) combined with cognitive training are yet unclear. Previously, we reported behavioral effects of a 3-day visuospatial memory training with concurrent anodal tDCS over the right temporoparietal cortex in older adults. To investigate intervention-induced neural alterations we here used functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) datasets available from 35 participants of this previous study, acquired before and after the intervention. To delineate changes in whole-brain functional network architecture, we employed eigenvector centrality mapping. Gray matter alterations were analyzed using DTI-derived mean diffusivity (MD). Network centrality in the bilateral posterior temporooccipital cortex was reduced after anodal compared to sham stimulation. This focal effect is indicative of decreased functional connectivity of the brain region underneath the anodal electrode and its left-hemispheric homolog with other "relevant" (i.e., highly connected) brain regions, thereby providing evidence for reorganizational processes within the brain's network architecture. Examining local MD changes in these clusters, an interaction between stimulation condition and training success indicated a decrease of MD in the right (stimulated) temporooccipital cluster in individuals who showed superior behavioral training benefits. Using a data-driven whole-brain network approach, we provide evidence for targeted neuromodulatory effects of a combined tDCS-and-training intervention. We show for the first time that gray matter alterations of microstructure (assessed by DTI-derived MD) may be involved in tDCS-enhanced cognitive training. Increased knowledge on how combined interventions modulate neural networks in older adults, will help the development of specific therapeutic interventions against age-associated cognitive decline.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imagem de Tensor de Difusão , Substância Cinzenta/diagnóstico por imagem , Humanos , Aprendizagem , Imageamento por Ressonância Magnética/métodos , Estimulação Transcraniana por Corrente Contínua/métodos
8.
BMJ Open ; 12(4): e055038, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410927

RESUMO

INTRODUCTION: A substantial number of patients diagnosed with COVID-19 experience long-term persistent symptoms. First evidence suggests that long-term symptoms develop largely independently of disease severity and include, among others, cognitive impairment. For these symptoms, there are currently no validated therapeutic approaches available. Cognitive training interventions are a promising approach to counteract cognitive impairment. Combining training with concurrent transcranial direct current stimulation (tDCS) may further increase and sustain behavioural training effects. Here, we aim to examine the effects of cognitive training alone or in combination with tDCS on cognitive performance, quality of life and mental health in patients with post-COVID-19 subjective or objective cognitive impairments. METHODS AND ANALYSIS: This study protocol describes a prospective randomised open endpoint-blinded trial. Patients with post-COVID-19 cognitive impairment will either participate in a 3-week cognitive training or in a defined muscle relaxation training (open-label interventions). Irrespective of their primary intervention, half of the cognitive training group will additionally receive anodal tDCS, all other patients will receive sham tDCS (double-blinded, secondary intervention). The primary outcome will be improvement of working memory performance, operationalised by an n-back task, at the postintervention assessment. Secondary outcomes will include performance on trained and untrained tasks and measures of health-related quality of life at postassessment and follow-up assessments (1 month after the end of the trainings). ETHICS AND DISSEMINATION: Ethical approval was granted by the Ethics Committee of the University Medicine Greifswald (number: BB 066/21). Results will be available through publications in peer-reviewed journals and presentations at national and international conferences. TRIAL REGISTRATION NUMBER: NCT04944147.


Assuntos
COVID-19 , Disfunção Cognitiva , Estimulação Transcraniana por Corrente Contínua , Encéfalo , COVID-19/terapia , Ensaios Clínicos Fase II como Assunto , Cognição , Disfunção Cognitiva/terapia , Humanos , Estudos Prospectivos , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto
9.
Alzheimers Dement (N Y) ; 8(1): e12262, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35229023

RESUMO

INTRODUCTION: Given rapid global population aging, developing interventions against age-associated cognitive decline is an important medical and societal goal. We evaluated a cognitive training protocol combined with transcranial direct current stimulation (tDCS) on trained and non-trained functions in non-demented older adults. METHODS: Fifty-six older adults (65-80 years) were randomly assigned to one of two interventional groups, using age and baseline performance as strata. Both groups performed a nine-session cognitive training over 3 weeks with either concurrent anodal tDCS (atDCS, 1 mA, 20 minutes) over the left dorsolateral prefrontal cortex (target intervention) or sham stimulation (control intervention). Primary outcome was performance on the trained letter updating task immediately after training. Secondary outcomes included performance on other executive and memory (near and far transfer) tasks. All tasks were administered at baseline, post-intervention, and at 1- and 7-month follow-up assessments. Prespecified analyses to investigate treatment effects were conducted using mixed-model analyses. RESULTS: No between-group differences emerged in the trained letter updating and Markov decision-making tasks at post-intervention and at follow-up timepoints. Secondary analyses revealed group differences in one near-transfer task: Superior n-back task performance was observed in the tDCS group at post-intervention and at follow-up. No such effects were observed for the other transfer tasks. Improvements in working memory were associated with individually induced electric field strengths. DISCUSSION: Cognitive training with atDCS did not lead to superior improvement in trained task performance compared to cognitive training with sham stimulation. Thus, our results do not support the immediate benefit of tDCS-assisted multi-session cognitive training on the trained function. As the intervention enhanced performance in a near-transfer working memory task, we provide exploratory evidence for effects on non-trained working memory functions in non-demented older adults that persist over a period of 1 month.

10.
Alzheimers Res Ther ; 12(1): 142, 2020 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-33160420

RESUMO

BACKGROUND: Given the growing older population worldwide, and the associated increase in age-related diseases, such as Alzheimer's disease (AD), investigating non-invasive methods to ameliorate or even prevent cognitive decline in prodromal AD is highly relevant. Previous studies suggest transcranial direct current stimulation (tDCS) to be an effective method to boost cognitive performance, especially when applied in combination with cognitive training in healthy older adults. So far, no studies combining tDCS concurrent with an intense multi-session cognitive training in prodromal AD populations have been conducted. METHODS: The AD-Stim trial is a monocentric, randomized, double-blind, placebo-controlled study, including a 3-week tDCS-assisted cognitive training with anodal tDCS over left DLPFC (target intervention), compared to cognitive training plus sham (control intervention). The cognitive training encompasses a letter updating task and a three-stage Markov decision-making task. Forty-six participants with subjective cognitive decline (SCD) or mild cognitive impairment (MCI) will be randomized block-wise to either target or control intervention group and participate in nine interventional visits with additional pre- and post-intervention assessments. Performance in the letter updating task after training and anodal tDCS compared to sham stimulation will be analyzed as primary outcome. Further, performance on the second training task and transfer tasks will be investigated. Two follow-up visits (at 1 and 7 months post-training) will be performed to assess possible maintenance effects. Structural and functional magnetic resonance imaging (MRI) will be applied before the intervention and at the 7-month follow-up to identify possible neural predictors for successful intervention. SIGNIFICANCE: With this trial, we aim to provide evidence for tDCS-induced improvements of multi-session cognitive training in participants with SCD and MCI. An improved understanding of tDCS effects on cognitive training performance and neural predictors may help to develop novel approaches to counteract cognitive decline in participants with prodromal AD. TRIAL REGISTRATION: ClinicalTrials.gov , NCT04265378 . Registered on 07 February 2020. Retrospectively registered. Protocol version: Based on BB 004/18 version 1.2 (May 17, 2019). SPONSOR: University Medicine Greifswald.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Estimulação Transcraniana por Corrente Contínua , Idoso , Doença de Alzheimer/terapia , Cognição , Disfunção Cognitiva/terapia , Método Duplo-Cego , Humanos , Córtex Pré-Frontal , Ensaios Clínicos Controlados Aleatórios como Assunto
11.
Front Aging Neurosci ; 12: 79, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265687

RESUMO

Age-related deterioration in white and gray matter is linked to cognitive deficits. Reduced microstructure of the fornix, the major efferent pathway of the hippocampus, and volume of the dentate gyrus (DG), may cause age-associated memory decline. However, the linkage between these anatomical determinants and memory retrieval in healthy aging are poorly understood. In 30 older adults, we acquired diffusion tensor and T1-weighted images for individual deterministic tractography and volume estimation. A memory task, administered outside of the scanner to assess retrieval of learned associations, required discrimination of previously acquired picture-word pairs. The results showed that fornix fractional anisotropy (FA) and left DG volumes were related to successful retrieval. These brain-behavior associations were observed for correct rejections, but not hits, indicating specificity of memory network functioning for detecting false associations. Mediation analyses showed that left DG volume mediated the effect of fornix FA on memory (48%), but not vice versa. These findings suggest that reduced microstructure induces volume loss and thus negatively affects retrieval of learned associations, complementing evidence of a pivotal role of the fornix in healthy aging. Our study offers a neurobehavioral model to explain variability in memory retrieval in older adults, an important prerequisite for the development of interventions to counteract cognitive decline.

12.
Front Aging Neurosci ; 11: 200, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31474848

RESUMO

BACKGROUND: With increasing aging populations worldwide, developing interventions against age-associated cognitive decline is particularly important. Evidence suggests that combination of brain stimulation with cognitive training intervention may enhance training effects in terms of performance gain or transfer to untrained domains. This protocol describes a Phase IIb clinical trial that investigates the intervention effects of training combined with brain stimulation in older adults. METHODS: The TrainStim-Cog study is a monocentric, randomized, single-blind, placebo-controlled intervention. The study will investigate cognitive training with concurrent anodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (target intervention) compared to cognitive training with sham stimulation (control intervention) over nine sessions in 3 weeks, consisting of a letter updating task, and a three-stage Markov decision-making task. Fifty-six older adults will be recruited from the general population. Baseline assessment will be performed including neuropsychological screening and performance on training tasks. Participants will be allocated to one of the two study arms using block-wise randomization stratified by age and baseline performance with a 1:1 allocation ratio. Primary outcome is performance in the letter updating task after training under anodal tDCS compared to sham stimulation. Secondary outcomes include performance changes in the decision-making task and transfer tasks, as well as brain structure and functional networks assessed by structural, and functional magnetic resonance imaging (MRI) that are acquired pre- and post-intervention. SIGNIFICANCE: The main aim of the TrainStim-Cog study is to provide evidence for behavioral and neuronal effects of tDCS-accompanied cognitive training and to elucidate the underlying mechanisms in older adults. Our findings will contribute toward developing efficient interventions for age-associated cognitive decline. TRIAL REGISTRATION: This trial was retrospectively registered at Clinicaltrials.gov Identifier: NCT03838211 at February 12, 2019, https://clinicaltrials.gov/ct2/show/NCT03838211. PROTOCOL VERSION: Based on BB 004/18 version 1.2 (May 17, 2019).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...