Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 10(1): 80-85, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30655951

RESUMO

Potent covalent inhibitors of Bruton's tyrosine kinase (BTK) based on an aminopyrazole carboxamide scaffold have been identified. Compared to acrylamide-based covalent reactive groups leading to irreversible protein adducts, cyanamide-based reversible-covalent inhibitors provided the highest combined BTK potency and EGFR selectivity. The cyanamide covalent mechanism with BTK was confirmed through enzyme kinetic, NMR, MS, and X-ray crystallographic studies. The lead cyanamide-based inhibitors demonstrated excellent kinome selectivity and rat pharmacokinetic properties.

2.
Bioorg Med Chem Lett ; 22(10): 3392-7, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22542194

RESUMO

A series of 2-(1H-pyrazol-1-yl)pyridines are described as inhibitors of ALK5 (TGFß receptor I kinase). Modeling compounds in the ALK5 kinase domain enabled some optimization of potency via substitutions on the pyrazole core. One of these compounds PF-03671148 gave a dose dependent reduction in TGFß induced fibrotic gene expression in human fibroblasts. A similar reduction in fibrotic gene expression was observed when PF-03671148 was applied topically in a rat wound repair model. Thus these compounds have potential utility for the prevention of dermal scarring.


Assuntos
Cicatriz/prevenção & controle , Descoberta de Drogas , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Piridinas/química , Piridinas/farmacologia , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Pele/efeitos dos fármacos , Animais , Modelos Moleculares , Fosforilação , Ratos , Receptor do Fator de Crescimento Transformador beta Tipo I
3.
J Comput Aided Mol Des ; 25(7): 621-36, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21604056

RESUMO

Fragment Based Drug Discovery (FBDD) continues to advance as an efficient and alternative screening paradigm for the identification and optimization of novel chemical matter. To enable FBDD across a wide range of pharmaceutical targets, a fragment screening library is required to be chemically diverse and synthetically expandable to enable critical decision making for chemical follow-up and assessing new target druggability. In this manuscript, the Pfizer fragment library design strategy which utilized multiple and orthogonal metrics to incorporate structure, pharmacophore and pharmacological space diversity is described. Appropriate measures of molecular complexity were also employed to maximize the probability of detection of fragment hits using a variety of biophysical and biochemical screening methods. In addition, structural integrity, purity, solubility, fragment and analog availability as well as cost were important considerations in the selection process. Preliminary analysis of primary screening results for 13 targets using NMR Saturation Transfer Difference (STD) indicates the identification of uM-mM hits and the uniqueness of hits at weak binding affinities for these targets.


Assuntos
Descoberta de Drogas , Fragmentos de Peptídeos/química , Proteínas/química , Sítios de Ligação , Técnicas de Química Combinatória/métodos , Cristalografia por Raios X , Indústria Farmacêutica , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Biblioteca de Peptídeos , Conformação Proteica
4.
Chem Biol Drug Des ; 75(5): 444-54, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20486930

RESUMO

High-throughput screening is utilized by pharmaceutical researchers and, increasingly, academic investigators to identify agents that act upon enzymes, receptors, and cellular processes. Screening hits include molecules that specifically bind the target and a greater number of non-specific compounds. It is necessary to 'triage' these hits to identify the subset worthy of further exploration. As part of our antibacterial drug discovery effort, we applied a suite of biochemical and biophysical tools to accelerate the triage process. We describe application of these tools to a series of 9-oxo-4,9-dihydropyrazolo[5,1-b]quinazoline-2-carboxylic acids (PQ) hits from a screen of Escherichia coli phosphopantetheine adenylyltransferase (PPAT). Initial confirmation of specific binding to phosphopantetheine adenylyltransferase was obtained using biochemical and biophysical tools, including a novel orthogonal assay, isothermal titration calorimetry, and saturation transfer difference NMR. To identify the phosphopantetheine adenylyltransferase sub-site bound by these inhibitors, two techniques were utilized: steady-state enzyme kinetics and a novel (19)F NMR method in which fluorine-containing fragments that bind the ATP and/or phosphopantetheine sites serve as competitive reporter probes. These data are consistent with PQs binding the ATP sub-site. In addition to identification of a series of PPAT inhibitors, the described hit triage process is broadly applicable to other enzyme targets in which milligram quantities of purified target protein are available.


Assuntos
Antibacterianos/química , Escherichia coli/enzimologia , Ensaios de Triagem em Larga Escala , Nucleotidiltransferases/antagonistas & inibidores , Quinazolinas/química , Antibacterianos/farmacologia , Ligação Competitiva , Fenômenos Biofísicos , Calorimetria , Domínio Catalítico , Flúor/química , Cinética , Espectroscopia de Ressonância Magnética , Nucleotidiltransferases/metabolismo , Quinazolinas/farmacologia , Relação Estrutura-Atividade
5.
J Biol Chem ; 285(11): 8340-51, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20061378

RESUMO

Sirtuins catalyze NAD(+)-dependent protein deacetylation and are critical regulators of transcription, apoptosis, metabolism, and aging. There are seven human sirtuins (SIRT1-7), and SIRT1 has been implicated as a key mediator of the pathways downstream of calorie restriction that have been shown to delay the onset and reduce the incidence of age-related diseases such as type 2 diabetes. Increasing SIRT1 activity, either by transgenic overexpression of the Sirt1 gene in mice or by pharmacological activation by small molecule activators resveratrol and SRT1720, has shown beneficial effects in rodent models of type 2 diabetes, indicating that SIRT1 may represent an attractive therapeutic target. Herein, we have assessed purported SIRT1 activators by employing biochemical assays utilizing native substrates, including a p53-derived peptide substrate lacking a fluorophore as well as the purified native full-length protein substrates p53 and acetyl-CoA synthetase1. SRT1720, its structurally related compounds SRT2183 and SRT1460, and resveratrol do not lead to apparent activation of SIRT1 with native peptide or full-length protein substrates, whereas they do activate SIRT1 with peptide substrate containing a covalently attached fluorophore. Employing NMR, surface plasmon resonance, and isothermal calorimetry techniques, we provide evidence that these compounds directly interact with fluorophore-containing peptide substrates. Furthermore, we demonstrate that SRT1720 neither lowers plasma glucose nor improves mitochondrial capacity in mice fed a high fat diet. SRT1720, SRT2183, SRT1460, and resveratrol exhibit multiple off-target activities against receptors, enzymes, transporters, and ion channels. Taken together, we conclude that SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Sirtuína 1/metabolismo , Estilbenos/farmacologia , Acetilação/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos , Animais , Glicemia/efeitos dos fármacos , Calorimetria , Diabetes Mellitus Tipo 2/metabolismo , Gorduras na Dieta/farmacologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/química , Humanos , Camundongos , Camundongos Obesos , Ressonância Magnética Nuclear Biomolecular , Resveratrol , Rodaminas , Estilbenos/química , Especificidade por Substrato , Ressonância de Plasmônio de Superfície , Proteína Supressora de Tumor p53/metabolismo
6.
ACS Chem Biol ; 4(6): 473-83, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19413326

RESUMO

As part of our effort to inhibit bacterial fatty acid biosynthesis through the recently validated target biotin carboxylase, we employed a unique combination of two emergent lead discovery strategies. We used both de novo fragment-based drug discovery and virtual screening, which employs 3D shape and electrostatic property similarity searching. We screened a collection of unbiased low-molecular-weight molecules and identified a structurally diverse collection of weak-binding but ligand-efficient fragments as potential building blocks for biotin carboxylase ATP-competitive inhibitors. Through iterative cycles of structure-based drug design relying on successive fragment costructures, we improved the potency of the initial hits by up to 3000-fold while maintaining their ligand-efficiency and desirable physicochemical properties. In one example, hit-expansion efforts resulted in a series of amino-oxazoles with antibacterial activity. These results successfully demonstrate that virtual screening approaches can substantially augment fragment-based screening approaches to identify novel antibacterial agents.


Assuntos
Antibacterianos/farmacologia , Carbono-Nitrogênio Ligases/antagonistas & inibidores , Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia , Antibacterianos/química , Sítios de Ligação , Carbono-Nitrogênio Ligases/metabolismo , Técnicas de Química Combinatória , Inibidores Enzimáticos/química , Ligantes , Testes de Sensibilidade Microbiana , Peso Molecular , Relação Estrutura-Atividade
7.
J Bacteriol ; 189(22): 8196-205, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17873050

RESUMO

Phosphopantetheine adenylyltransferase (PPAT) from Escherichia coli is an essential hexameric enzyme that catalyzes the penultimate step in coenzyme A (CoA) biosynthesis and is a target for antibacterial drug discovery. The enzyme utilizes Mg-ATP and phosphopantetheine (PhP) to generate dephospho-CoA (dPCoA) and pyrophosphate. When overexpressed in E. coli, PPAT copurifies with tightly bound CoA, suggesting a feedback inhibitory role for this cofactor. Using an enzyme-coupled assay for the forward-direction reaction (dPCoA-generating) and isothermal titration calorimetry, we investigated the steady-state kinetics and ligand binding properties of PPAT. All substrates and products bind the free enzyme, and product inhibition studies are consistent with a random bi-bi kinetic mechanism. CoA inhibits PPAT and is competitive with ATP, PhP, and dPCoA. Previously published structures of PPAT crystallized at pH 5.0 show half-the-sites reactivity for PhP and dPCoA and full occupancy by ATP and CoA. Ligand-binding studies at pH 8.0 show that ATP, PhP, dPCoA, and CoA occupy all six monomers of the PPAT hexamer, although CoA exhibits two thermodynamically distinct binding modes. These results suggest that the half-the-sites reactivity observed in PPAT crystal structures may be pH dependent. In light of previous studies on the regulation of CoA biosynthesis, the PPAT kinetic and ligand binding data suggest that intracellular PhP concentrations modulate the distribution of PPAT monomers between high- and low-affinity CoA binding modes. This model is consistent with PPAT serving as a "backup" regulator of pathway flux relative to pantothenate kinase.


Assuntos
Coenzima A/biossíntese , Escherichia coli/enzimologia , Nucleotidiltransferases/metabolismo , Calorimetria , Escherichia coli/genética , Cinética , Modelos Moleculares , Nucleotidiltransferases/genética , Panteteína/análogos & derivados , Panteteína/metabolismo , Ligação Proteica , Conformação Proteica
8.
J Pharm Biomed Anal ; 28(1): 23-30, 2002 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-11861105

RESUMO

A column trapping system has been incorporated into high performance liquid chromatography-nuclear magnetic resonance-mass spectrometry (HPLC-NMR-MS) to reduce data acquisition time of NMR experiments. The system uses a trapping column to capture analytes after the HPLC column and back flush trapped analyte to the flow cell of the NMR probe for detection. A dilution solvent is mixed with eluent from HPLC column to reduce the influence of the organic content in the mobile phase before column trapping. The trapping column is also coupled with a mass spectrometer (MS) to get complementary MS data on the same peak. Studies on 1-hydroxylated 9-amino-1,2,3,4-tetrahydro-acridine (1-OH tacrine), indomethacin and testosterone with the column trapping system showed good recovery of analytes and over 3-fold mean increase in UV-VIS signal intensity. The time saving on NMR experiments with the column trapping system was demonstrated by the analysis of dog microsomal incubate with tacrine.


Assuntos
Microssomos/metabolismo , Tacrina/análise , Tacrina/metabolismo , Animais , Inibidores da Colinesterase/análise , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Cães , Espectrometria de Massas , Ressonância Magnética Nuclear Biomolecular , Tacrina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...