Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(39): 35693-35705, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37810651

RESUMO

This research aims to develop high-performance and low-carbon composites using biobased poly(butylene succinate) (PBS) reinforced with well-aligned pineapple leaf fibers (PALF). PBS/PALF composites containing 10 and 20% PALF by weight (wt %) were prepared using a two-roll mill. During the mixing process, the molten material was slightly stretched to align the fibers in the machine direction, forming a uniaxial prepreg. The prepreg was subsequently stacked and compressed into composite sheets at compression temperatures of 120 and 140 °C. Differential scanning calorimetry, X-ray diffraction, and crystalline morphology analysis revealed the presence of matrix orientation in the prepreg, which was preserved in sheets compressed at 120 °C but not at 140 °C. The composites prepared at 120 °C exhibited significantly higher flexural strength and modulus compared to those prepared at 140 °C, attributed to the combined effect of matrix and PALF orientation. Additionally, the composites displayed an increase in heat distortion temperature, with a maximum of 10 °C higher than the matrix melting temperature (∼113 °C) for the composite with 20 wt % PALF. These findings indicate the potential for increased utilization of this low-carbon green composite.

2.
Polymers (Basel) ; 15(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37447540

RESUMO

Pineapple materials sourced from agricultural waste have been employed to process novel bio-degradable rigid composite foams. The matrix for the foam consisted of starch extracted from pineapple stem, known for its high amylose content, while the filler comprised non-fibrous cellulosic materials sourced from pineapple leaf. In contrast to traditional methods that involve preparing a batter, this study adopted a unique approach where the starch gel containing glycerol were first formed using a household microwave oven, followed by blending the filler into the gel using a two-roll mill. The resulting mixture was then foamed at 160 °C using a compression molding machine. The foams displayed densities ranging from 0.43-0.51 g/cm3 and exhibited a highly amorphous structure. Notably, the foams demonstrated an equilibrium moisture content of approximately 8-10% and the ability to absorb 150-200% of their own weight without disintegration. Flexural strengths ranged from 1.5-4.5 MPa, varying with the filler and glycerol contents. Biodegradability tests using a soil burial method revealed complete disintegration of the foam into particles measuring 1 mm or smaller within 15 days. Moreover, to showcase practical applications, an environmentally friendly single-use foam tray was fabricated. This novel method, involving gel formation followed by filler blending, sets it apart from previous works. The findings highlight the potential of pineapple waste materials for producing sustainable bio-degradable foams with desirable properties and contribute to the field of sustainable materials.

3.
Nanomaterials (Basel) ; 13(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37299606

RESUMO

In this work, the effect of cellulose nanofiber (CNF) on the mechanical properties of long pineapple leaf fiber (PALF)-reinforced epoxy composites was investigated. The content of PALF was fixed at 20 wt.% and the CNF content was varied at 1, 3, and 5 wt.% of the epoxy matrix. The composites were prepared by hand lay-up method. Comparison was conducted between CNF-, PALF- and CNF-PALF-reinforced composites. It was found that the introduction of these small amounts of CNF into epoxy resin caused very small effects on flexural modulus and strength of neat epoxy. However, impact strength of epoxy with 1 wt.% CNF increased to about 115% that of neat epoxy, and, as the content of CNF increased to 3 and 5 wt.%, the impact strength decreased to that of neat epoxy. Observation of the fractured surface under electron microscope revealed the change in failure mechanism from a smooth surface to a much rougher surface. For epoxy containing 20 wt.% PALF, both flexural modulus and strength increased significantly to about 300% and 240% that of neat epoxy. The composite impact strength increased to about 700% that of the neat epoxy. For hybrid systems containing both CNF and PALF, there were few changes observed in both flexural modulus and strength compared to the PALF epoxy system. However, much improvement in impact strength was obtained. By using epoxy containing 1 wt.% CNF as the matrix, the impact strength increased to about 220% that of 20 wt.% PALF epoxy or 1520% that of neat epoxy. It thus could be deduced that the spectacular improvement in impact strength was due to the synergistic effect of CNF and PALF. The failure mechanism leading to the improvement in impact strength will be discussed.

4.
Polymers (Basel) ; 15(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37242963

RESUMO

Plastic waste poses a significant challenge for the environment, particularly smaller plastic products that are often difficult to recycle or collect. In this study, we developed a fully biodegradable composite material from pineapple field waste that is suitable for small-sized plastic products that are difficult to recycle, such as bread clips. We utilized starch from waste pineapple stems, which is high in amylose content, as the matrix, and added glycerol and calcium carbonate as the plasticizer and filler, respectively, to improve the material's moldability and hardness. We varied the amounts of glycerol (20-50% by weight) and calcium carbonate (0-30 wt.%) to produce composite samples with a wide range of mechanical properties. The tensile moduli were in the range of 45-1100 MPa, with tensile strengths of 2-17 MPa and an elongation at break of 10-50%. The resulting materials exhibited good water resistance and had lower water absorption (~30-60%) than other types of starch-based materials. Soil burial tests showed that the material completely disintegrated into particles smaller than 1 mm within 14 days. We also created a bread clip prototype to test the material's ability to hold a filled bag tightly. The obtained results demonstrate the potential of using pineapple stem starch as a sustainable alternative to petroleum-based and biobased synthetic materials in small-sized plastic products while promoting a circular bioeconomy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...