Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37959751

RESUMO

A raspberry-like SiO2@TiO2 new material supported on functionalized graphene oxide was prepared to reduce titania's band gap value. The material was characterized through different analytical methods such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HR-TEM). The band gap value was studied via UV-Vis absorption spectra and determined through the Kubelka-Munk equation. A theoretical study was also carried out to analyze the interaction between the species.

2.
Analyst ; 149(1): 108-124, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37982410

RESUMO

Dopamine (DA) and uric acid (UA), which are vital components in human metabolism, cause several health problems if they are present in altered concentrations; thus, the determination of DA and UA is essential in real samples using selective sensors. In the present study, graphite carbon paste electrodes (CPE) were fabricated using ZnO/carbon quantum dots (ZnO/CQDs) and employed as electrochemical sensors for the detection of DA and UA. These electrodes were fully characterized via different analytical techniques (XRD, SEM, TEM, XPS, and EDS). The electrochemical responses from the modified electrodes were evaluated using cyclic voltammetry, square wave voltammetry, and electrochemical impedance spectroscopy. The results showed that the present electrode has exhibited high sensitivity towards DA, recognizing even at low concentrations (0.12 µM), and no inference was observed in the presence of UA. The ZnO/CQD electrode was applied for the simultaneous detection of co-existing DA and UA in real human urine samples and the peak potential separation between DA and UA was found to be greatly associated with the synergistic effect originated from ZnO and CQDs. The limit of detection (LOD) of the electrode was analyzed, and compared with other commercially available electrodes. Thus, the ZnO/CQD electrode was used to detect DA and UA in real samples, such as Saccharomyces cerevisiae cells.


Assuntos
Técnicas Biossensoriais , Pontos Quânticos , Óxido de Zinco , Humanos , Carbono/química , Ácido Úrico/urina , Dopamina/química , Óxido de Zinco/química , Técnicas Eletroquímicas/métodos , Ácido Ascórbico/química , Eletrodos , Modelos Teóricos , Técnicas Biossensoriais/métodos
3.
ACS Appl Mater Interfaces ; 15(21): 25952-25965, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37200218

RESUMO

The capture and storage of CO2 are of growing interest in atmospheric science since greenhouse gas emission has to be reduced considerably in the near future. The present paper deals with the doping of cations on ZrO2, i.e., M-ZrO2 (M = Li+, Mg2+, or Co3+), defecting the crystalline planes for the adsorption of carbon dioxide. The samples were prepared by the sol-gel method and characterized completely by different analytical methods. The deposition of metal ions on ZrO2 (whose crystalline phases: monoclinic and tetragonal are transformed into a single-phase such as tetragonal for LiZrO2 and cubic for MgZrO2 or CoZrO2) shows a complete disappearance of the XRD monoclinic signal, and it is consistent with HRTEM lattice fringes: 2.957 nm for ZrO2 (101, tetragonal/monoclinic), 3.018 nm for tetragonal LiZrO2, 2.940 nm for cubic MgZrO2, and 1.526 nm for cubic CoZrO2. The samples are thermally stable, resulting an average size of ∼5.0-15 nm. The surface of LiZrO2 creates the oxygen deficiency, while for Mg2+ (0.089 nm), since the size of the atom is relatively greater than that of Zr4+ (0.084 nm), the replacement of Zr4+ by Mg2+ in sublattice is difficult; thus, a decrease of the lattice constant was noticed. Since the high band gap energy (ΔE > 5.0 eV) is suitable for CO2 adsorption, the samples were employed for the selective detection/capture of CO2 by using electrochemical impedance spectroscopy (EIS) and direct current resistance (DCR), showing that CoZrO2 is capable of CO2 capture about 75%. If M+ ions are deposited within the ZrO2 matrix, then the charge imbalance allows CO2 to interact with the oxygen species to form CO32- which produces a high resistance (21.04 × 106 (Ω, Ohm)). The adsorption of CO2 with the samples was also theoretically studied showing that the interaction of CO2 with MgZrO2 and CoZrO2 is more feasible than with LiZrO2, subscribing to the experimental data. The temperature effect (273 to 573 K) for the interaction of CO2 with CoZrO2 was also studied by the docking method and observed the cubic structure is more stable at high temperatures as compared to the monoclinic geometry. Thus, CO2 would preferably interact with ZrO2c (ERS = -19.29 kJ/mol) than for ZrO2m (22.4 J/mmol (ZrO2c = cubic; ZrO2m = monoclinic).

4.
ACS Omega ; 8(8): 7459-7469, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36873030

RESUMO

The present work demonstrates a simple and sustainable method for forming azo oligomers from low-value compounds such as nitroaniline. The reductive oligomerization of 4-nitroaniline was achieved via azo bonding using nanometric Fe3O4 spheres doped with metallic nanoparticles (Cu NPs, Ag NPs, and Au NPs), which were characterized by different analytical methods. The magnetic saturation (M s) of the samples showed that they are magnetically recoverable from aqueous environments. The effective reduction of nitroaniline followed pseudo-first-order kinetics, reaching a maximum conversion of about 97%. Fe3O4-Au is the best catalyst, its a reaction rate (k Fe3O4-Au = 0.416 mM L-1 min-1) is about 20 times higher than that of bare Fe3O4 (k Fe3O4 = 0.018 mM L-1 min-1). The formation of the two main products was determined by high-performance liquid chromatography-mass spectrometry (HPLC-MS), evidencing the effective oligomerization of NA through N = N azo linkage. It is consistent with the total carbon balance and the structural analysis by density functional theory (DFT)-based total energy. The first product, a six-unit azo oligomer, was formed at the beginning of the reaction through a shorter, two-unit molecule. The nitroaniline reduction is controllable and thermodynamically viable, as shown in the computational studies.

5.
J Fluoresc ; 33(5): 2041-2059, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36976400

RESUMO

The present work highlights the sustainable approach for the transformation of plastic waste into fluorescent carbon dots (CDs) through carbonization and then they were functionalized with L-cysteine and o-phenylenediamine. CDs which were characterized by different analytical techniques such as X-ray diffraction (XRD), thermogravimetric analysis (TGA), Scanning electron microscopy (SEM), and transmission electron microscopy (TEM) are employed to recognize Cu2+, Fe2+, and Hg2+ ions. The results show that the fluorescence emission was considerably quenched, and it is consistent with the interference and Jobs plots. The detection limit was found to be 0.35µM for Cu(II), 1.38 µM for Hg(II), and 0.51µM Fe(III). The interaction of CDs with metal ions enhances the fluorescence intensity detecting histamine successfully. It shows that plastic waste-based CDs can be applied clinically to detect toxic metals and biomolecules. Moreover, the system was employed to develop the cellular images using Saccharomyces cerevisiae cells with the support of a confocal microscope. Furthermore, theoretical studies were performed for the naphthalene layer (AR) as a model for C-dots, then optimized its structure and analyzed by using the molecular orbital. The obtained TD-DFT spectra coincided with experimental spectra for CDs/M2+/histamine systems.


Assuntos
Mercúrio , Pontos Quânticos , Histamina , Pontos Quânticos/química , Compostos Férricos/análise , Carbono/química , Íons , Modelos Teóricos , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes/química
6.
Dalton Trans ; 51(46): 17671-17687, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36342366

RESUMO

Since the interfacial binding strength and structural integrity have a strong influence on the active sites of nanocomposites, this study focused on exploring the structural and electronic properties at the interface between the implanted metal ion and host support. For this, nanocomposites of gold embedded in CeO2-ZrO2 and CeO2-Al2O3 matrices were fabricated, and their structural and morphological properties were investigated using ICP-OES, UV-vis, XRD, Raman, HRTEM, and high-resolution XPS studies and compared. From the results, it was found that the deposition of gold is highly favored over CeO2-ZrO2 (3.99 atomic %) than CeO2-Al2O3 (1.21 atomic %); however, the same amount of gold was used for the synthesis of both nanocomposites, as befits it. The HRTEM images of Au/CeO2-ZrO2 displayed well-organized yarn textured particles with less than 5 nm size, which lacks in Au/CeO2-Al2O3. The reason for this less systematized and less Au embedding in the presence of alumina in CeO2-Al2O3 was verified with the high-resolution XPS studies of both nanocomposites and an elevated binding energy due to the mobility of Au particles over CeO2-Al2O3 was observed, while for Au/CeO2-ZrO2, a very small binding energy shift of gold states (Au 4f5/2 0.39; Au 4f7/2 0.17 eV) and the CeO2-ZrO2 matrix that favored an increased intermolecular force between gold and the supporting host was observed. This agrees well with UV-vis electronic spectrum analysis, which revealed that the incorporation of gold nanoparticles narrowed the band gap more significantly in Au/CeO2-ZrO2 (4.2 eV) than Au/CeO2-Al2O3 (4.94 eV) suggesting the elevated electron transfer from the conduction band of CeO2-ZrO2 to Au interfaces. In addition, XRD and Raman studies of Au/CeO2-ZrO2 showed a pronounced phase transformation of Ce4+ to Ce3+ in the presence of homovalent Zr4+ ions with an increased structural disorder in CeO2 promoting the localized surface plasmon resonance (LSPR) in the lattice of CeO2-ZrO2, which was less detected in Au/CeO2-Al2O3 due to the interference of less-desired γ-Al2O3 phases. These characteristics of Au/CeO2-ZrO2 ensured its performance as a promised photocatalyst for thioanisole degradation without using any harmful oxidants, and its stability towards different irradiation conditions, such as visible, ultraviolet, and solar light.

7.
ACS Omega ; 7(38): 33985-34001, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36188324

RESUMO

This paper describes the crystal interphase impact of ZnFe2O4-Ag in the photodegradation of Rhodamine B. Prepared ZnFe2O4 nanoparticles (NPs) were deposited with Ag NPs to offer ZnFe2O4-Ag (0-2.5%). An X-ray diffraction peak corresponding to the Ag NPs was detected if the particle content reached about 2.0%, observing multiple crystalline interphases in HR-TEM. Magnetic saturation (Ms) was increased ∼160% times for ZnFe2O4-Ag (7.25 to 18.71 emu/g) and ZnFe2O4 (9.62 to 25.09 emu/g) if the temperature is lowered from 298 to 5.0 K; while for Fe3O4 (91.09 to 96.19 emu/g), the Ms increment was just about 5.6%. After analyzing the DFT-Density of State, a decrease of bandgap energy for ZnFe2O4-Ag6 from the influence of the size of Ag cluster was seen. Quantum yield (Φ) was 0.60 for ZnFe2O4, 0.25 for ZnFe2O4-Ag (1.0%), 0.70 for ZnFe2O4-Ag (1.5%), 0.66 for ZnFe2O4-Ag (2.0%), and 0.66 for ZnFe2O4-Ag (2.5%), showing that the disposition of Ag NPs (1.5-2.5%) increases the Φ to >0.60. The samples were used to photo-oxidize RhB under visible light assisted by photopowered Langmuir adsorption. The degradation follows first-order kinetics (k = 5.5 × 10-3 min-1), resulting in a greater k = 2.0 × 10-3 min-1 for ZnFe2O4-Ag than for ZnFe2O4 (or Fe3O4, k = 1.1 × 10-3 min-1). DFT-total energy was used to analyze the intermediates formed from the RhB oxidation. Finally, the ZnFe2O4-Ag exhibits good antibacterial behavior because of the presence of Zn and the Ag components.

8.
Analyst ; 146(24): 7653-7669, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34806723

RESUMO

Pharmaceutical effluents are a serious environmental issue, which require to be treated by a suitable technique; thus, the electrochemical process is actively considered as a viable method for the treatment. In this work, new carbon paste electrodes (CPEs) were fabricated by compressing gold and silver nanoparticles (NPs), namely, CPE/Ag NPs, CPE/Au NPs, and CPE/Ag/Au NPs and then completely characterized by different analytical methods. The performance of the electrodes was studied after determining their surface area (×10-6 cm2) as 4.17, 5.05, 5.27, and 5.12, producing high anodic currents for K4[Fe(CN)6] compared to the commercial electrode. This agrees with the results of impedance study, where the electron transfer rate constants (kapp, ×10-3 cm s-1) were determined to be 28.7, 42.6, 41.0, and 101.4 for CPE, CPE/Ag NPs, CPE/Au NPs, and CPE/Ag/Au NPs, respectively, through the Bode plot-phase shifts. This is consistent with the charge transfer resistance (RCT, Ω), resulting as 171 for CPE/Ag/Au NPs < 395 for CPE/Ag NPs < 427 for CPE/Au NPs and < 742 for CPE. Therefore, these electrodes were employed to detect trimethoprim (TMP) since metallic NPs contribute good crystallinity, stability, conduciveness, and surface plasmon resonance to the CPE, convalescing the sensitivity; comprehensively, they were applied for its detection in real water and human urine samples, and the limit of detection (LOD) was as low as 0.026, 0.032, and 0.026 µmol L-1 for CPE/Ag NPs, CPE/Au NPs, and CPE/Ag/Au NPs, respectively. In contrast, unmodified CPE was unable to detect TMP due to the lack of efficiency. The developed technique shows excellent electrochemical recovery of 92.3 and 97.1% in the urine sample. Density functional theory (DFT) was used to explain the impact of the metallic center in graphite through density of states (DOS).


Assuntos
Nanopartículas Metálicas , Eletrodos , Ouro , Humanos , Modelos Teóricos , Prata , Trimetoprima
9.
J Inorg Biochem ; 218: 111406, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33773324

RESUMO

Generation of nitric oxide has been a great interest in cell biology as it involves a wide range of physiological functions including the blood pressure control; thus the exploitation of ruthenium chemistry has been motivated in biochemical and clinical points of view. Herein, the structural and electronic properties of ruthenium(II) complexes of 1,4,8,11-tetraazacyclotetradecane containing pyridyl, imidazole and benzimidazole (L1, L2, L3) were analyzed theoretically in the context of how spin multiplicity plays a crucial role influencing the NO release from the LRu-ONO moiety. The results show that ß-cleavage of nitrito in the complex motivates the release of NO as it depends highly on total spin multiplicity of metal ion altering significantly the geometrical parameters; particularly, a decrease of bond length of Ru-ONO is highly associated with an increase of RuO-NO bond distance that correlates with the decrease of the Ru-O-NO bond angle ultimately leading to the release of NO; apparently, the bending nature of Ru-O-NO defines its release from the complex. This is consistent with orbital energy (dx2-y2) where the stabilization of axial Ru-O bond in the complex was observed, and proved by molecular orbital studies. In the excitation of the complex (singlet to triplet or singlet to quintet), the NO release has been facilitated, agreeing with the Gibbs free energy data where a lower energy for NO release was obtained compared to other types of excitations. In the calculated electronic spectra, a visible broad band with relatively high intensity for [RuL1ONO]+ was observed, agreeing approximately with reported experimental results.


Assuntos
Alcanos/química , Complexos de Coordenação/química , Modelos Teóricos , Óxido Nítrico/metabolismo , Rutênio/química , Água/química , Cristalografia por Raios X
10.
Photochem Photobiol Sci ; 18(7): 1761-1772, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31111854

RESUMO

Biomolecules like cysteine and cytosine play a significant role in many physiological processes, and their unusual level in biological systems can lead to many diseases including cancer. Indeed, the need for selective detection of these moieties by a fluorescence probe is imperative. Thus, thiophene based Schiff N,N'-bis(thiophene-2-ylmethylene)thiophenemethane (BMTM) was synthesized and then characterized using several analytical techniques before converting it into organic nanoparticles (ONPs). Then, fluorescent organic inorganic nanohybrids (FONs) were obtained after decorating ONPs with AuNPs to yield BMTM-Au-ONPs (FONPs). The morphology of the particles, analyzed using a Transmission Electron Microscope (TEM), shows that AuNPs were embedded with low density organic matter (ONPs). FONPs were employed to recognize cysteine and cytosine simultaneously. No interference was observed from other moieties such as guanine, uracyl, NADH, NAD, ATP, and adenine during the detection. It means that the intensity of the fluorescence signal was significantly changed (enhanced for cytosine and quenched for cysteine). So, FONPs were used to detect cysteine and cytosine in real samples, like Saccharomyces cerevisiae cells. As expected, no considerable fluorescence signal for cysteine was observed, while for cytosine, strong fluorescence signals were detected in the cells. DFT was used to explain the interaction of FONPs with cysteine or cytosine.


Assuntos
Cisteína/análise , Citosina/análise , Ouro/química , Nanopartículas Metálicas/química , Tiofenos/química , Cisteína/metabolismo , Citosina/metabolismo , Teoria da Densidade Funcional , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Microscopia Confocal , Microscopia Eletrônica de Transmissão , NAD/química , Saccharomyces cerevisiae/metabolismo
11.
Food Chem ; 278: 523-532, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-30583407

RESUMO

We developed a technique that detects Al3+ in milk/bio-samples, and reversibly applied to recognize tetracycline (TC) in milk, enhancing the fluorescence intensity without interference from other cations (Cd2+, Ni2+, Co2+, Sr2+, Mg2+, Fe3+, K+, Sm3+, Ag+, Na+, Ba2+, Cr3+, Zn2+ and Mn2+); the limit of detection (LOD) is found to be 0.00022 mM with r2 = 0.9439. The detection of Al3+ is tested in milk as well as in living cells (Saccharomyces cerevisiae and Debaryomyces spp.) by TC or by its quantum dots. This is consistent with the molecular orbital, revealing that the lowering of the energy of HOMO (Highly Occupied Molecular Orbital) discourages the electron transfer from HOMO of fluorophore to HOMO of excited states of Al-complex that increases the fluorescent intensity. Interestingly, carbon dots (CDs) generated from TC also recognize Al3+ as its LOD is as low as to 0.00050 mM with r2 of 0.9404.


Assuntos
Alumínio/análise , Leite/química , Imagem Molecular/métodos , Pontos Quânticos/química , Tetraciclina/química , Alumínio/química , Animais , Limite de Detecção , Metais/química , Saccharomyces cerevisiae/química
12.
Chemosphere ; 213: 481-497, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30245225

RESUMO

In this paper, we report the combination of two metal oxides (TiO2ZnO) that allows mixed density of states to reduce band gap energy, facilitating the photo-oxidation of Congo red dye under visible light. For the oxidation, a possible mechanism is proposed after analyzing the intermediates by GC-MS, and it is consistent with Density Functional Theory (DFT). The nanohybrids were characterized comprehensibly by several analytical techniques such as X-Ray diffraction (XRD), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), and X-ray Photoelectron Spectroscopy (XPS). For the addition of ZnO to TiO2, a dominance of anatase phase was found rather than other phases (rutile or brookite). A broad band (∼550 nm) is observed in UV-Visible spectra for TiO2ZnO/Ag NPs nm because of Surface Plasmon properties of Ag NPs. The band gap energy was calculated for TiO2ZnO/Ag system, and then it has been further studied by DFT in order to show why the convergence of two semiconductors allows a mixed density of states, facilitating the reduction of the energy gap between occupied and unoccupied bands; ultimately, it improves the performance of catalysts under visible light. Significantly, the interaction of crystal planes (0 0 I) of TiO2 anatase and (0 0 1) of ZnO crucially plays as an important role for the reduction of energy band-gap. Additionally, TiO2ZnOAg NPs were used recognize Saccharomyces cerevisiae cells by con-focal fluorescence microscope, showing that it develops bright bio-images for the cells; while for TiO2 or ZnO or TiO2ZnO NPs, no fluorescent response was seen within the cells.


Assuntos
Vermelho Congo/química , Luz , Fotólise , Titânio/química , Catálise , Vermelho Congo/efeitos da radiação , Microscopia , Nanopartículas/química , Semicondutores , Análise Espectral , Óxido de Zinco/química
13.
Mol Divers ; 22(2): 269-280, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29532429

RESUMO

Structural and electronic properties of a series of 25 phosphonate derivatives were analyzed applying density functional theory, with the exchange-correlation functional PBEPBE in combination with the 6-311++G** basis set for all atoms. The chemical reactivity of these derivatives has been interpreted using quantum descriptors such as frontier molecular orbitals (HOMO, LUMO), Hirshfeld charges, molecular electrostatic potential, and the dual descriptor [[Formula: see text]]. These descriptors are directly related to experimental median lethal dose ([Formula: see text], expressed as its decimal logarithm [[Formula: see text]([Formula: see text]] through a multiple linear regression equation. The proposed model predicts the toxicity of phosphonates in function of the volume (V), the load of the most electronegative atom of the molecule (q), and the eigenvalue of the molecular orbital HOMO ([Formula: see text]. The obtained values in the internal validation of the model are: [Formula: see text]%, [Formula: see text]%, [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]%. The toxicity of nine phosphonate derivatives used as test molecules was adequately predicted by the model. The theoretical results indicate that the oxygen atom of the O=P group plays an important role in the interaction mechanism between the phosphonate and the acetylcholinesterase enzyme, inhibiting the removal of the proton of the ser-200 residue by the his-440 residue.


Assuntos
Simulação por Computador , Organofosfonatos/química , Organofosfonatos/toxicidade , Relação Quantitativa Estrutura-Atividade , Elétrons , Dose Letal Mediana , Modelos Moleculares , Conformação Molecular
14.
J Chem Inf Model ; 55(11): 2391-402, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26505207

RESUMO

The relationship between structure and corrosion inhibition of a series of 30 imidazol, benzimidazol, and pyridine derivatives has been established through the investigation of quantum descriptors calculated with PBE/6-311++G**. A quantitative structure-property relationship model was obtained by examination of these descriptors using a genetic functional approximation method based on a multiple linear regression analysis. Our results indicate that the efficiency of corrosion inhibitors is strongly associated with aromaticity, electron donor ability, and molecular volume descriptors. In order to calibrate and validate the proposed model, we performed electrochemical impedance spectroscopy (EIS) studies on imidazole, 2-methylimidazole, benzimidazole, 2-chloromethylbenzimidazole, pyridine, and 2-aminopyridine compounds. The experimental values for efficiency of corrosion inhibition are in good agreement with the estimated values obtained by our model, thus confirming that our approach represents a promising and suitable tool to predict the inhibition of corrosion attributes of nitrogen containing heterocyclic compounds. The adsorption behavior of imidazole or benzimidazole heterocyclic molecules on the Fe(110) surface was also studied to elucidate the inhibition mechanism; the aromaticity played an important role in the adsorbate-surface complex.


Assuntos
Aminopiridinas/química , Benzimidazóis/química , Corrosão , Imidazóis/química , Ferro/química , Adsorção , Espectroscopia Dielétrica , Halogenação , Modelos Moleculares , Teoria Quântica , Propriedades de Superfície
15.
J Mol Model ; 21(9): 224, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26252971

RESUMO

The ruthenium complex with (N,N,N-tris(benzimidazol-2yl-methyl)amine, L(1)) was prepared, and characterized. Fukui data were used to localize the reactive sites on the ligand. The structural and electronic properties of the complex were analyzed by DFT in different oxidation states in order to evaluate its oxidant properties for phenol oxidation. The results show that the hard Ru(IV) cation bonds preferentially with a hard base (Namine = amine nitrogen, or axial chloride ion), and soft Ru(II) with a soft base (Nbzim = benzimidazole nitrogen or axial triphenyl phosphine). Furthermore, the Jahn-Teller effect causes an elongation of the axial bond in the octahedral structure. The bonding nature and the orbital contribution to the electronic transitions of the complex were studied. The experimental UV-visible bands were interpreted by using TD-DFT studies. The complex oxidizes phenol to benzoquinone in the presence of H2O2 and the intermediate was detected by HPLC and (13)C NMR. A possible mechanism and rate law are proposed for the oxidation. The adduct formation of phenol with [Ru(O)L(1)](2+) or [Ru(OH)L(1)](+) is theoretically analyzed to show that [Ru(OH)L(1)-OPh](+) could produce the phenol radical.


Assuntos
Benzimidazóis/química , Complexos de Coordenação/química , Fenol/química , Rutênio/química , Cromatografia Líquida de Alta Pressão , Eletroquímica , Peróxido de Hidrogênio/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Oxirredução
16.
Molecules ; 20(4): 6002-21, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25853317

RESUMO

Organic nanoparticles (ONPs) of lipoic acid and its doped derivatives ONPs/Ag and ONPs/Au were prepared and characterized by UV-Visible, EDS, and TEM analysis. The antibacterial properties of the ONPs ONPs/Ag and ONPs/Au were tested against bacterial strains (Staphylococcus aureus, Bacillus cereus, Escherichia coli and Salmonella typhi). Minimal Inhibitory Concentration (MIC) and bacterial growth inhibition tests show that ONPs/Ag are more effective in limiting bacterial growth than other NPs, particularly, for Gram positive than for Gram-negative ones. The order of bacterial cell growth inhibition was ONPs/Ag > ONPs > ONPs/Au. The morphology of the cell membrane for the treated bacteria was analyzed by SEM. The nature of bond formation of LA with Ag or Au was analyzed by molecular orbital and density of state (DOS) using DFT.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Ouro , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Prata , Bactérias/efeitos dos fármacos , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ácido Tióctico/química
17.
Chempluschem ; 80(4): 665-672, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31973435

RESUMO

Imine-linked pyridine-coupled (ILPC) receptors have been synthesised and characterised. The absorption and fluorescence properties of these receptors have been explored through a combination of experimental and theoretical studies. The ILPC receptors are processed into organic nanoparticles (ONPs) and then decorated with gold nanoparticles (AuNPs) for the selective recognition of iodide. The selective recognition behaviour is authenticated with the changes in fluorescence spectra, low detection limit (1.4 nM) and no interference in aqueous systems. The present investigation represents the first example of nanomolar detection of iodide in aqueous medium using organic-inorganic hybrid nanoparticles (ONPs-AuNPs). The probe has been utilised successfully for the detection of iodide content in urine samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...