Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(21): 24486-24496, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35583340

RESUMO

The dissolution of intermediate lithium polysulfides (LiPS) into an electrolyte and their shuttling between the electrodes have been the primary bottlenecks for the commercialization of high-energy density lithium-sulfur (Li-S) batteries. While several two-dimensional (2D) materials have been deployed in recent years to mitigate these issues, their activity is strictly restricted to their edge-plane-based active sites. Herein, for the first time, we have explored a phase transformation phenomenon in a 2D material to enhance the number of active sites and electrocatalytic activity toward LiPS redox reactions. Detailed theoretical calculations demonstrate that phase transformation from the 2H to 1T' phase in a MoSe2 material activates the basal planes that allow for LiPS adsorption. The corresponding transformation mechanism and LiPS adsorption capabilities of the as-formed 1T'-MoSe2 were elucidated experimentally using microscopic and spectroscopic techniques. Further, the electrochemical evaluation of phase-transformed MoSe2 revealed its strong electrocatalytic activity toward LiPS reduction and their oxidation reactions. The 1T'-MoSe2-based cathode hosts for sulfur later provide a superior cycling performance of over 250 cycles with a capacity loss of only 0.15% per cycle along with an excellent Coulombic efficiency of 99.6%.

2.
J Am Chem Soc ; 143(38): 15732-15744, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34524818

RESUMO

Mixed cationic and anionic redox cathode chemistry is emerging as the conventional cationic redox centers of transition-metal-based layered oxides are reaching their theoretical capacity limit. However, these anionic redox reactions in transition metal oxide-based cathodes attained by taking excess lithium ions have resulted in stability issues due to weak metal-oxygen ligand covalency. Here, we present an alternative approach of improving metal-ligand covalency by introducing a less electronegative chalcogen ligand (sulfur) in the cathode structural framework where the metal d band penetrates into the ligand p band, thereby utilizing reversible mixed anionic and cationic redox chemistry. Through this design strategy, we report the possibility of developing a new family of layered cathode materials when partially filled d orbital redox couples like Fe2+/3+ are introduced in the Li-ion conducting phase (Li2SnS3). Further, the electron energy loss spectroscopy and X-ray absorption near-edge structure analyses are used to qualitatively identify the charge contributors at the metal and ligand sites during Li+ extraction. The detailed high-resolution transmission electron microscopy and high annular dark field-scanning transmission electron microscopy investigations reveal the multi-redox induced structural modifications and its surface amorphization with nanopore formation during cycling. Findings from this study will shed light on designing Ni and Co free chalcogen cathodes and various functional materials in the chalcogen-based dual anionic and cationic redox cathode avenue.

3.
Nano Lett ; 21(2): 907-913, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33416335

RESUMO

Lithium batteries that could be charged on exposure to sunlight will bring exciting new energy storage technologies. Here, we report a photorechargeable lithium battery employing nature-derived organic molecules as a photoactive and lithium storage electrode material. By absorbing sunlight of a desired frequency, lithiated tetrakislawsone electrodes generate electron-hole pairs. The holes oxidize the lithiated tetrakislawsone to tetrakislawsone while the generated electrons flow from the tetrakislawsone cathode to the Li metal anode. During electrochemical operation, the observed rise in charging current, specific capacity, and Coulombic efficiency under light irradiation in contrast to the absence of light indicates that the quinone-based organic electrode is acting as both photoactive and lithium storage material. Careful selection of electrode materials with optimal bandgap to absorb the intended frequency of sunlight and functional groups to accept Li-ions reversibly is a key to the progress of solar rechargeable batteries.

4.
Biosens Bioelectron ; 172: 112724, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33142197

RESUMO

The uneven morphology and the trapped charges at the surface of the traditionally used supporting substrate-based 2D biosensors produces a scattering effect, which leads to a irregular signals from individually fabricated devices. Though suspended 2D channel material has the potential to overcome scattering effects from the substrates but achieving reliability and selectivity, have been limiting the using of this biosensor technology. Here, we have demonstrated nanogap electrodes fabrication by using the self-assembly technique, which provides suspension to the 2D-MoS2. These nano-spacing electrodes not only give suspension but also provide robustness strength to the atomic layer, which remains freestanding after coating of the Hafnium oxide (HfO2) as well as linkers and antibodies. For evaluating the electrical characteristics of suspended MoS2 FET, gating potential was applied through an electrolyte on the suspended MoS2 transistor. This helped in achieved a lower subthreshold swing 70 mV/dec and ON/OFF ratio 107. Later, pH detection was conducted at room temperature, which showed an impressive sensitivity of ~880 by changing 1 unit of pH. We have also successfully shown Escherichia coli (E. coli) bacteria sensing from the suspended MoS2 transistor by functionalizing dielectric layer with E. coli antibodies. The reported biosensor has shown the ~9% of conductance changes with a lower concentration of E. coli (10 CFU/mL; colony-forming unit per mL) as well as maintain the constant sensitivity in three fabricated devices. The obtained enhancement in the sensitivity of devices and its effect on biomolecules detection can be extened to other biomolecules and this type of architecture has the potential to detect COVID-19 viruses based biomolecules.


Assuntos
Técnicas Biossensoriais/métodos , Teste para COVID-19/métodos , Dissulfetos , Molibdênio , Nanoestruturas/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/estatística & dados numéricos , COVID-19/diagnóstico , COVID-19/virologia , Teste para COVID-19/estatística & dados numéricos , Materiais Revestidos Biocompatíveis/química , Escherichia coli/química , Escherichia coli/isolamento & purificação , Humanos , Concentração de Íons de Hidrogênio , Microeletrodos , Microtecnologia , Reprodutibilidade dos Testes , SARS-CoV-2/química , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade , Eletricidade Estática , Volatilização
5.
ACS Appl Mater Interfaces ; 12(34): 38275-38284, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32786238

RESUMO

Solid oxide electrolysis cells (SOECs) are devices that enable economically viable production of clean fuel such as hydrogen gas, which can be used in many industrial applications and serving as an energy carrier for renewable energy sources. Operation of SOEC at intermediate temperature (IT) range (400 to 600 °C) is highly attractive because many unexploited heat sources from industries can be utilized. Proton conducting SOECs based on barium-zirconium-cerate electrolytes show great potential for operating at this temperature range due to their high proton conductivity at reduced temperatures. In this study, a new tridoped BaCe0.5Zr0.2Y0.1Yb0.1Gd0.1O3-δ (BCZYYbGd) electrolyte with very high chemical stability and proton conductivity is coupled with a PrNi0.5Co0.5O3-δ steam electrode and a Ni-BCYYbGd hydrogen electrode for IT-SOEC operation. The dopants of the electrolyte were carefully designed to obtain the optimum stability and conductivity for IT-SOEC. The BCYYbGd electrolyte was stable over 200 h at 50 vol % steam in argon and at 600 °C, and a very high electrolysis current density of 2.405 A cm-2 was obtained at 600 °C and 1.6 V at 20 vol % of steam in argon. This system was also found to be highly reversible, exhibiting very high performance in SOFC mode and suggesting a potential candidate for next generation proton conducting electrolyte.

6.
ACS Appl Mater Interfaces ; 12(24): 27112-27121, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32432451

RESUMO

Curtailing the polysulfide shuttle by anchoring the intermediate lithium polysulfides (LiPS) within the electrode structure is essential to impede the rapid capacity fade in lithium-sulfur (Li-S) batteries. While most of the contemporary Li-S cathode surfaces are capable of entrapping certain LiPS, developing a unique electrode material that can adsorb all the intermediates of sulfur redox is imperative. Herein, we report doping of the MoS2 atomic structure with nickel (Ni@1TMoS2) to modulate its absorption capability toward all LiPS and function as an electrocatalyst for Li-S redox. Detailed in situ and ex situ spectroscopic analysis revealed that both Ni and Mo sites chemically anchor all the intermediate of LiPS. Electrochemical studies and detailed kinetics analysis suggested that the conversion of liquid LiPS to solid end products are facilitated on the Ni@1TMoS2 electrocatalytic surface. Further, the employment of the Ni@1TMoS2 electrocatalyst enhances the Li+ diffusion coefficient, thus contributing to the realization of a high capacity of 1107 mA h g-1 at 0.2C with a very limited capacity fade of 0.19% per cycle for over 100 cycles. In addition, this cathode demonstrated an excellent high rate and long cycling performance for over 300 cycles at a 1C rate.

7.
ChemSusChem ; 13(9): 2106, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32323925

RESUMO

Invited for this month's cover are the groups of George John at the City College of New York-CUNY, Leela R. Arava at Wayne State University, and Pulickel Ajayan at Rice University. The image portraits future prospects of bioderived molecular electrodes for next-generation energy-storage materials. The Minireview itself is available at 10.1002/cssc.201903589.

8.
ChemSusChem ; 13(9): 2186-2204, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32100420

RESUMO

Nature-derived organic small molecules, as energy-storage materials, provide low-cost, recyclable, and non-toxic alternatives to inorganic and polymer electrodes for lithium-/sodium-ion batteries and beyond. Some organic carbonyl compounds have met or exceeded the voltages and gravimetric storage capacities achieved by traditional transition metal oxide-based compounds due to the metal-ion coupled redox and facile electron-transport capability of functional groups. Stability issues that previously limited the capacity of small organic molecules can be remediated with reactions to form insoluble salts, noncovalent interactions (hydrogen bonding and π stacking), loading onto substrates, and careful electrolyte selection. The cost-effectiveness and sustainability of organic materials may further be improved by employing porphyrin-based electrodes and multivalent-ion batteries utilizing abundant metals, such as aluminum and zinc. Finally, redox flow batteries take advantage of the solubility of organics for the development of scalable, high power density, and safe energy-storage devices based on aqueous electrolytes. Herein, the advantages and prospects of small molecule-based electrodes, with a focus on nature-derived organic and biomimetic materials, to realize the next-generation of green battery chemistry are reviewed.

9.
Nano Lett ; 19(8): 5229-5236, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31322899

RESUMO

Although lithium-sulfur (Li-S) batteries are explored extensively, several features of the lithium polysulfides (LiPS) redox mechanism at the electrode/electrolyte interface still remain unclear. Though various in situ and ex situ characterization techniques have been deployed in recent years, many spatial aspects related to the local electrochemical phenomena of the Li-S electrode are not elucidated. Herein, we introduce the atomic-force-microscopy-based scanning electrochemical microscopy (AFM-SECM) technique to study the Li-S interfacial redox reactions at nanoscale spatial resolution in real time. In situ electrochemical and alternating current (AC) phase mappings of Li2S particle during oxidation directly distinguished the presence of both conducting and insulating regions within itself. During charging, the conducting part undergoes dissolution, whereas the insulating part, predominantly Li2S, chemically/electrochemically reacts with intermediate LiPS. At higher oxidation potentials, as-reacted LiPS turns into insulating products, which accumulate over cycling, resulting in reduction of active material utilization and ultimately leading to capacity fade. The interdependence of the topography and electrochemical oxidative behavior of Li2S on the carbon surface by AFM-SECM reveals the Li2S morphology-activity relationship and provides new insights into the capacity fading mechanism in Li-S batteries.

10.
ACS Appl Mater Interfaces ; 10(33): 27771-27779, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30048115

RESUMO

Due to its unique electronic band characteristics (presence of d-orbital in both Mo and Se atoms), MoSe2 has potential to exhibit high electrical conductivity and superior hydrogen evolution reaction (HER) kinetics when compared to other transition-metal dichalcogenides. Though various strategies were employed earlier to obtain MoSe2 structure with different shapes and morphologies, precise control on achieving both Mo- and Se-edge sites and understanding their interaction with reactants in HER remains to be challenging. Here, we successfully demonstrate the vapor diffusion method to grow highly crystalline MoSe2 nanoflowers on carbon cloth in a vertical orientation. Uniformly dispersed nanoflowers with Mo- and Se-edge sites exhibited remarkable electrocatalytic activity on hydrogen reduction in terms of low Tafel slope and high exchange current density. The existence of a strong interaction between MoSe2 and carbon cloth assists in long-term hydrogen production and confirms the exceptional durability of the catalyst. A comprehensive evidence for hydrogen adsorption on dual active sites, viz., Mo- and Se-edges of MoSe2, is provided using X-ray photoelectron spectroscopy and in situ Raman spectroscopy containing a specially designed liquid immersion objective lens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...