Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 1(4): 412-24, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-20195491

RESUMO

The organism's ability to regulate oxidative stress and metabolism is well recognized as a major determinant of longevity. While much research interest in this area is directed towards the study of genes that inhibit oxidative stress and/or improve metabolism, contribution to the aging process of genes with antagonistic effects on these two pathways is still less understood. The present study investigated the respective roles of the histone deacetylase Sirt1 and the thioredoxin binding protein TXNIP, two genes with opposite effects on oxidative stress and metabolism, in mediating the action of putative anti-aging interventions. Experiments were carried out in vitro and in vivo to determine the effect of proven, limited calorie availability, and unproven, resveratrol and dehydroepiandrosterone (DHEA), on the expression of Sirt1 and TXNIP. The results indicated that limited calorie availability consistently inhibited TXNIP in cancer and in normal cells including stem cells, however, it only slightly induced Sirt1expression in cancer cells. In contrast, resveratrol had a biphasic effect, and DHEA inhibited the expression of these two genes in a tissue specific manner, both in vitro and in vivo. Whereas all the three approaches tested inhibited TXNIP through the glycolytic pathway, DHEA acted by inhibiting G6PD and resveratrol through the activation of AMPK. In light of previous reports that Sirt1 induces AMPK-mediated signaling pathway, our findings point to the possibility of a negative relationship between Sirt1 and TXNIP that, if validated, can be exploited to improve the efficacy of putative anti-aging interventions.


Assuntos
Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Tiorredoxinas/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteínas de Transporte/genética , Células Cultivadas , Desidroepiandrosterona/farmacologia , Glucose/farmacologia , Humanos , Camundongos , Ratos , Resveratrol , Sirtuína 1 , Estilbenos/farmacologia , Tiorredoxinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...