Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 205(12): 385, 2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-37980630

RESUMO

This review addresses the involvement of DNA supercoiling in the development of virulence and antibiotic profiles for uropathogenic Escherichia coli and the emergence of new pathotypes such as strain ST131 (serotype O25:H4). The mechanism suggests a role for topoisomerase enzymes and associated mutations in altering the chromosomal supercoiling state and introducing the required DNA twists for expression of intrinsic ß-lactamase by ampC and certain virulence factors. In Escherichia coli, constitutive hyperexpression of intrinsic ampC is associated with specific mutations in the promoter and attenuator regions. However, many reports have documented the involvement of slow growth interventions in the expression of intrinsic resistance determinants. There is evidence that a stationary phase transcriptional switch protein, "BolA," is involved in the expression of the intrinsic ampC gene under starvation conditions. The process involves changes in the activity of the enzyme "gyrase," which leads to a change in the chromosomal DNA topology. Consequently, the DNA is relaxed, and the expression of the bolA gene is upregulated. The evolution of the extraintestinal pathogenic E. coli strain ST131 has demonstrated successful adaptability to various stress conditions and conferred compensatory mutations that endowed the microbe with resistance to fluoroquinolones and ß-lactams. The results of this study provided new insights into the evidence for the influence of DNA topology in the expression of virulence genes and various determinants of antibiotic resistance (e.g., the intrinsic ampC gene) in Escherichia coli pathotypes.


Assuntos
Escherichia coli , beta-Lactamases , Escherichia coli/genética , beta-Lactamases/genética , DNA , Antibacterianos/farmacologia , Fluoroquinolonas
2.
Nucleic Acids Res ; 35(Web Server issue): W97-W104, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17537813

RESUMO

MobilomeFINDER (http://mml.sjtu.edu.cn/MobilomeFINDER) is an interactive online tool that facilitates bacterial genomic island or 'mobile genome' (mobilome) discovery; it integrates the ArrayOme and tRNAcc software packages. ArrayOme utilizes a microarray-derived comparative genomic hybridization input data set to generate 'inferred contigs' produced by merging adjacent genes classified as 'present'. Collectively these 'fragments' represent a hypothetical 'microarray-visualized genome (MVG)'. ArrayOme permits recognition of discordances between physical genome and MVG sizes, thereby enabling identification of strains rich in microarray-elusive novel genes. Individual tRNAcc tools facilitate automated identification of genomic islands by comparative analysis of the contents and contexts of tRNA sites and other integration hotspots in closely related sequenced genomes. Accessory tools facilitate design of hotspot-flanking primers for in silico and/or wet-science-based interrogation of cognate loci in unsequenced strains and analysis of islands for features suggestive of foreign origins; island-specific and genome-contextual features are tabulated and represented in schematic and graphical forms. To date we have used MobilomeFINDER to analyse several Enterobacteriaceae, Pseudomonas aeruginosa and Streptococcus suis genomes. MobilomeFINDER enables high-throughput island identification and characterization through increased exploitation of emerging sequence data and PCR-based profiling of unsequenced test strains; subsequent targeted yeast recombination-based capture permits full-length sequencing and detailed functional studies of novel genomic islands.


Assuntos
Biologia Computacional/métodos , Regulação Fúngica da Expressão Gênica , Genes Bacterianos , Genoma Bacteriano , Ilhas Genômicas , RNA Bacteriano/genética , Algoritmos , Enterobacteriaceae/genética , Genômica/métodos , Internet , Modelos Teóricos , Reação em Cadeia da Polimerase , Pseudomonas aeruginosa/genética , Software , Streptococcus suis/genética
3.
Nucleic Acids Res ; 34(1): e3, 2006 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-16414954

RESUMO

We devised software tools to systematically investigate the contents and contexts of bacterial tRNA and tmRNA genes, which are known insertion hotspots for genomic islands (GIs). The strategy, based on MAUVE-facilitated multigenome comparisons, was used to examine 87 Escherichia coli MG1655 tRNA and tmRNA genes and their orthologues in E.coli EDL933, E.coli CFT073 and Shigella flexneri Sf301. Our approach identified 49 GIs occupying approximately 1.7 Mb that mapped to 18 tRNA genes, missing 2 but identifying a further 30 GIs as compared with Islander [Y. Mantri and K. P. Williams (2004), Nucleic Acids Res., 32, D55-D58]. All these GIs had many strain-specific CDS, anomalous GC contents and/or significant dinucleotide biases, consistent with foreign origins. Our analysis demonstrated marked conservation of sequences flanking both empty tRNA sites and tRNA-associated GIs across all four genomes. Remarkably, there were only 2 upstream and 5 downstream deletions adjacent to the 328 loci investigated. In silico PCR analysis based on conserved flanking regions was also used to interrogate hotspots in another eight completely or partially sequenced E.coli and Shigella genomes. The tools developed are ideal for the analysis of other bacterial species and will lead to in silico and experimental discovery of new genomic islands.


Assuntos
Escherichia coli/genética , Genoma Bacteriano , Ilhas Genômicas , RNA Bacteriano/genética , RNA de Transferência/genética , Shigella flexneri/genética , Software , Biologia Computacional , Genômica/métodos , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...