Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Opt ; 29(1): 015003, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38283937

RESUMO

Significance: In the analysis of two-layered turbid dental tissues, the outer finite-thickness layer is modeled by an optical transport coefficient distinct from its underlying semi-infinite substrate layer. The optical and thermophysical parameters of healthy and carious teeth across the various wavelengths were measured leading to the determination of the degree of reliability of each of the fitted parameters, with most reliable being thermal diffusivity and conductivity, enamel thickness, and optical transport coefficient of the enamel layer. Quantitative pixel-by-pixel images of the key reliable optical and thermophysical parameters were constructed. Aim: We introduced a theoretical model of pulsed photothermal radiometry based on conduction-radiation theory and applied to quantitative photothermal detection and imaging of biomaterials. The theoretical model integrates a combination of inverse Fourier transformation techniques, avoiding the conventional cumbersome analytical Laplace transform method. Approach: Two dental samples were selected for analysis: the first sample featured controlled, artificially induced early caries on a healthy tooth surface, while the second sample exhibited natural defects along with an internal filling. Using an Nd:YAG laser and specific optical parametric oscillator (OPO) wavelengths (675, 700, 750, and 808 nm), photothermal transient signals were captured from different points on these teeth and analyzed as a function of OPO wavelength. Measurements were also performed with an 808-nm laser diode for comparison with the same OPO wavelength excitation, particularly for the second sample with natural defects. Results: The findings demonstrated that the photothermal transient signals exhibit a fast-decaying pattern at shorter wavelengths due to their higher scattering nature, while increased scattering and absorption in the carious regions masked conductive and radiative contributions from the underlayer. These observations were cross-validated using micro-computed tomography, which also enabled the examination of signal patterns at different tooth locations. Conclusions: The results of our study showed the impact of optical and thermal characteristics of two-layered turbid dental tissues via an inverse Fourier technique, as well as the interactions between these layers, on the patterns observed in depth profiles.


Assuntos
Cárie Dentária , Lasers de Estado Sólido , Dente , Humanos , Reprodutibilidade dos Testes , Microtomografia por Raio-X , Dente/diagnóstico por imagem , Modelos Teóricos , Cárie Dentária/diagnóstico por imagem
2.
Sci Adv ; 9(51): eadi1899, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38134277

RESUMO

Spatial super-resolution in thermophotonic imaging was achieved using a combination of spatial second-derivative forming, spatial gradient adaptive filtering, and Richardson-Lucy deconvolution in conjunction with the construction of an experimental point spread function. When implemented through enhanced truncation-correlation photothermal coherence tomography (eTC-PCT), it was possible to restore blurred infrared thermophotonic images to their prediffusion optical resolution state. This modality was tested in various biological applications and proved to be capable of imaging fine axial cracks in human teeth, well-patterned anatomical subsurface structures of a mouse brain, and neovascularization in a mouse thigh due to the rapid proliferation of cancer cells. This modality was found to be immune to optical scattering and could reveal the true spatial extent of biological features at subsurface depths that conventional thermal imaging cannot reach because of limitations imposed by the physics of spreading diffusion.


Assuntos
Algoritmos , Imageamento Tridimensional , Animais , Humanos , Camundongos , Imageamento Tridimensional/métodos , Física
3.
Biomedicines ; 10(6)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35740446

RESUMO

While research suggests that COVID-19 vaccines are effective in producing anti-SARS-CoV-2 antibodies that reduce the risk of COVID-19 and its potentially severe complications, how long these antibodies persist after the infection/vaccination is unknown. Longitudinal studies and rapid and scalable platforms are needed for large-scale sero-diagnosis and vaccine evaluation. In this study, we examine the efficacy of our recently-developed handheld thermo-photonic device for rapid and low-cost assessment of the adaptive immune response of COVID+ and COVID- patients admitted to the intensive care unit (ICU) at a local hospital due to respiratory deterioration. Antibody testing included detection and quantification of IgG and IgM via thermo-photonic sensing of a commercially available COVID-19 IgG/IgM rapid test as well as standard measurements with quantitative enzyme-linked immunosorbent assays (qELISA). The results demonstrate that the thermo-photonic reader in conjunction with COVID-19 IgG/IgM test cassettes can detect and quantify IgG levels in COVID-19 antibody assays within the clinically relevant range and with a high correlation to those obtained from qELISA. We also found that the IgG antibody is more reliable for detecting individuals with an adaptive immune response to SARS-CoV-2 compared to the IgM antibody. The developed reader offers a low-cost, portable, and scalable solution for accessing the antibody titer of individuals against SARS-CoV-2 and can be used in local hospital settings.

4.
IEEE Trans Biomed Eng ; 69(9): 2755-2766, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35196221

RESUMO

The ability to detect dental caries at early stages lies at the heart of minimal intervention dentistry, enabling the curing or arresting of carious lesions before they advance to the cavity stage. Enhanced truncated-correlation photothermal coherence tomography (eTC-PCT) using mid-wave infrared (MWIR) cameras has recently been shown to offer tomographic visualization of early caries. The tomographic slicing ability of such systems, however, is believed to be limited by direct radiative thermal emission through the translucent dental enamel in the 3-5 µm MWIR spectral range. Such radiative emissions can dominate the delayed conductive thermal contributions needed for tomographic reconstruction of internal dental defects. It has been hypothesized that long-wave infrared (LWIR) eTC-PCT systems may offer better tomographic performance by taking advantage of the intrinsic attenuation of direct radiative emission by dental enamel in the LWIR spectral range, enabling more effective delayed conductive thermal contributions from subsurface caries. More than an order of magnitude lower cost of the system is another key attribute of LWIR eTC-PCT which can open the door for downstream translation of the technology to clinics. In this report, we offer a systematic comparison of the performance/effectiveness of caries detection with LWIR and MWIR eTC-PCT systems for detecting natural caries, bacterial caries, and artificially demineralized enamel surfaces. Our results suggest that the low-cost LWIR based eTC-PCT system provides 3D visualization and 2D slice-by-slice images of early caries and internal micro-cracks similar to those obtained from the more expensive MWIR-based eTC-PCT system, albeit with ∼1.3dB lower signal-to-noise ratio.


Assuntos
Cárie Dentária , Cárie Dentária/diagnóstico por imagem , Humanos , Tomografia de Coerência Óptica/métodos , Tomografia Computadorizada por Raios X
5.
IEEE Sens J ; 21(17): 18504-18511, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35581990

RESUMO

With the emergence of vaccines and antibody therapeutics, rapid and scalable platforms are needed to quantify the antibody response of individuals. Lateral flow immunoassay (LFA) based test strips provide a rapid, low-cost, and point-of-care approach to antibody testing against the SARS-CoV-2 virus. These convenient and scalable tests, however, are qualitative in nature and cannot quantify the immune response of the infected and/or vaccinated individuals. This study reports on the development of a rapid, low cost and portable thermo-photonic device that enables sensitive detection and quantification of antibody levels using commercially available COVID-19 Antibody LFAs. Unlike conventional LFA readers, the developed technology is based on sensing the infrared thermal radiation of tag gold nanoparticles following laser excitation (aka photothermal response). Our proof-of-concept results with humanized monoclonal anti-SARS-CoV-2 Spike receptor-binding domain (RBD) IgG demonstrate that the thermo-photonic technology can detect and quantify antibody concentrations within the clinically relevant range and with a limit of detection of [Formula: see text]/ml. The reader in conjunction with antibody LFAs offers a low-cost, portable, and scalable solution for assessment of the degree of immunity in populations, quality control of convalescent plasma donations for antibody therapeutics, and monitoring the immune response of infected individuals and vaccine recipients.

6.
Sci Rep ; 10(1): 7857, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398732

RESUMO

Active thermography (AT) is a widely studied non-destructive testing method for the characterization and evaluation of biological and industrial materials. Despite its broad range of potential applications, commercialization and wide-spread adaption of AT has long been impeded by the cost and size of infrared (IR) cameras. In this paper, we demonstrate that this cost and size limitation can be overcome using cell-phone attachment IR cameras. A software development kit (SDK) is developed that controls camera attributes through a simple USB interface and acquires camera frames at a constant frame rate up to 33 fps. To demonstrate the performance of our low-cost AT system, we report and discuss our experimental results on two high impact potential applications. The first set of experiments is conducted on a dental sample to investigate the clinical potential of the developed low-cost technology for detecting early dental caries, while the second set of experiments is conducted on the oral-fluid based lateral flow immunoassay to determine the viability of our technology for detecting and quantifying cannabis consumption at the point-of-care. Our results suggest achievement of reliable performance in the low-cost platform, comparable to those of costly and bulky research-grade systems, paving the way for translation of AT techniques to market.


Assuntos
Telefone Celular , Cárie Dentária/diagnóstico , Dronabinol/análise , Saliva/química , Termografia/métodos , Gravação de Videodisco/métodos , Algoritmos , Análise Custo-Benefício , Cárie Dentária/diagnóstico por imagem , Diagnóstico Precoce , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Termografia/economia , Termografia/instrumentação , Gravação de Videodisco/economia , Gravação de Videodisco/instrumentação
7.
Biomed Opt Express ; 11(4): 2178-2190, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32341875

RESUMO

With recent changes in the legalization of cannabis around the world, there is an urgent need for rapid, yet sensitive, screening devices for testing drivers and employees under the influence of cannabis at the roadside and at the workplace, respectively. Oral fluid lateral flow immunoassays (LFAs) have recently been explored for such applications. While LFAs offer on-site, low-cost and rapid detection of tetrahydrocannabinol (THC), their nominal detection threshold is about 25 ng/ml, which is well above the 1-5 ng/ml per se limits set by regulations. In this paper, we report on the development of a thermo-photonic imaging system that utilizes the commercially available low-cost LFAs but offers detection of THC at unprecedented low concentrations. Our reader technology examines photothermal responses of gold nanoparticles (GNPs) in LFA through lock-in thermography (LIT). Our results (n = 300) suggest that the demodulation of localized surface plasmon resonance responses of GNPs captured by infrared cameras allows for detection of THC concentrations as low as 2 ng/ml with 96% accuracy. Quantification of THC concentration is also achievable with our technology through calibration.

8.
J Mod Opt ; 64(12): 1229-1232, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29213190

RESUMO

This aim of this study was to test the feasibility of smartphone-based specular microscopy of the corneal endothelium at a sub-cellular resolution. Quantitative examination of endothelial cells is essential for evaluating corneal disease such as determining a diagnosis, monitoring progression and assessing treatment. Smartphone-based technology promises a new opportunity to develop affordable devices to foster quantitative examination of endothelial cells in rural and underserved areas. In our study, we incorporated an iPhone 6 and a slit lamp to demonstrate the feasibility of smartphone-based microscopy of the corneal endothelium at a sub-cellular resolution. The sub-cellular resolution images allowed quantitative calculation of the endothelial cell density. Comparative measurements revealed a normal endothelial cell density of 2978 cells/mm2 in the healthy cornea, and a significantly reduced cell density of 1466 cells/mm2 in the diseased cornea with Fuchs' dystrophy. Our ultimate goal is to develop a smartphone-based telemedicine device for low-cost examination of the corneal endothelium, which can benefit patients in rural areas and underdeveloped countries to reduce health care disparities.

9.
J Mod Opt ; 64(17): 1800-1807, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29129961

RESUMO

Functional optical coherence tomography (OCT) of stimulus-evoked intrinsic optical signal (IOS) promises to be a new methodology for high-resolution mapping of retinal neural dysfunctions. However, its practical applications for non-invasive examination of retinal function have been hindered by the low signal-to-noise ratio (SNR) and small magnitude of IOSs. Split spectrum amplitude-decorrelation has been demonstrated to improve the image quality of OCT angiography. In this study, we exploited split spectrum strategy to improve the sensitivity of IOS recording. The full OCT spectrum was split into multiple spectral bands and IOSs from each sub-band were calculated separately and then combined to generate a single IOS image sequence. The algorithm was tested on in vivo images of frog retinas. It significantly improved both IOS magnitude and SNR, which are essential for practical applications of functional IOS imaging.

10.
Biomed Opt Express ; 8(9): 4206-4216, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28966859

RESUMO

As a new optical coherence tomography (OCT) imaging modality, there is no standardized quantitative interpretation of OCT angiography (OCTA) characteristics of sickle cell retinopathy (SCR). This study is to demonstrate computer-aided SCR classification using quantitative OCTA features, i.e., blood vessel tortuosity (BVT), blood vessel diameter (BVD), vessel perimeter index (VPI), foveal avascular zone (FAZ) area, FAZ contour irregularity, parafoveal avascular density (PAD). It was observed that combined features show improved classification performance, compared to single feature. Three classifiers, including support vector machine (SVM), k-nearest neighbor (KNN) algorithm, and discriminant analysis, were evaluated. Sensitivity, specificity, and accuracy were quantified to assess the performance of each classifier. For SCR vs. control classification, all three classifiers performed well with an average accuracy of 95% using the six quantitative OCTA features. For mild vs. severe stage retinopathy classification, SVM shows better (97% accuracy) performance, compared to KNN algorithm (95% accuracy) and discriminant analysis (88% accuracy).

11.
Proc SPIE Int Soc Opt Eng ; 100452017 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-28781409

RESUMO

In conventional fundus imaging devices, transpupillary illumination is used for illuminating the inside of the eye. In this method, the illumination light is directed into the posterior segment of the eye through the cornea and passes the pupillary area. As a result of sharing the pupillary area for the illumination beam and observation path, pupil dilation is typically necessary for wide-angle fundus examination, and the field of view is inherently limited. An alternative approach is to deliver light from the sclera. It is possible to image a wider retinal area with transcleral-illumination. However, the requirement of physical contact between the illumination probe and the sclera is a drawback of this method. We report here trans-palpebral illumination as a new method to deliver the light through the upper eyelid (palpebra). For this study, we used a 1.5 mm diameter fiber with a warm white LED light source. To illuminate the inside of the eye, the fiber illuminator was placed at the location corresponding to the pars plana region. A custom designed optical system was attached to a digital camera for retinal imaging. The optical system contained a 90 diopter ophthalmic lens and a 25 diopter relay lens. The ophthalmic lens collected light coming from the posterior of the eye and formed an aerial image between the ophthalmic and relay lenses. The aerial image was captured by the camera through the relay lens. An adequate illumination level was obtained to capture wide angle fundus images within ocular safety limits, defined by the ISO 15004-2: 2007 standard. This novel trans-palpebral illumination approach enables wide-angle fundus photography without eyeball contact and pupil dilation.

12.
Biomed Opt Express ; 8(3): 1741-1753, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28663862

RESUMO

Early detection is an essential step for effective intervention of sickle cell retinopathy (SCR). Emerging optical coherence tomography angiography (OCTA) provides excellent three-dimensional (3D) resolution to enable label-free, noninvasive visualization of retinal vascular structures, promising improved sensitivity in detecting SCR. However, quantitative analysis of SCR characteristics in OCTA images is yet to be established. In this study, we conducted comprehensive analysis of six OCTA parameters, including blood vessel tortuosity, vessel diameter, vessel perimeter index (VPI), area of foveal avascular zone (FAZ), contour irregularity of FAZ and parafoveal avascular density. Compared to traditional retinal thickness analysis, five of these six OCTA parameters show improved sensitivity for SCR detection than retinal thickness. It is observed that the most sensitive parameters were the contour irregularity of FAZ in the superficial layer and avascular density in temporal regions, while the area of FAZ, tortuosity and mean diameter of the vessel were moderately sensitive.

13.
Opt Express ; 25(7): 8223-8236, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28380937

RESUMO

Guidestar hologram based digital adaptive optics (DAO) is one recently emerging active imaging modality. It records each complex distorted line field reflected or scattered from the sample by an off-axis digital hologram, measures the optical aberration from a separate off-axis digital guidestar hologram, and removes the optical aberration from the distorted line fields by numerical processing. In previously demonstrated DAO systems, the optical aberration was directly retrieved from the guidestar hologram by taking its Fourier transform and extracting the phase term. For the direct retrieval method (DRM), when the sample is not coincident with the guidestar focal plane, the accuracy of the optical aberration retrieved by DRM undergoes a fast decay, leading to quality deterioration of corrected images. To tackle this problem, we explore here an image metrics-based iterative method (MIM) to retrieve the optical aberration from the guidestar hologram. Using an aberrated objective lens and scattering samples, we demonstrate that MIM can improve the accuracy of the retrieved aberrations from both focused and defocused guidestar holograms, compared to DRM, to improve the robustness of the DAO.

14.
J Biomed Opt ; 21(12): 120502, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27992630

RESUMO

High resolution is important for sensitive detection of subtle distortions of retinal morphology at an early stage of eye diseases. We demonstrate virtually structured detection (VSD) as a feasible method to achieve in vivo super-resolution ophthalmoscopy. A line-scanning strategy was employed to achieve a super-resolution imaging speed up to 127 ?? frames / s with a frame size of 512 × 512 ?? pixels . The proof-of-concept experiment was performed on anesthetized frogs. VSD-based super-resolution images reveal individual photoreceptors and nerve fiber bundles unambiguously. Both image contrast and signal-to-noise ratio are significantly improved due to the VSD implementation.


Assuntos
Oftalmoscopia/métodos , Retina/diagnóstico por imagem , Animais , Anuros , Desenho de Equipamento , Humanos , Microscopia/instrumentação , Microscopia/métodos , Retina/citologia , Razão Sinal-Ruído
15.
Biomed Opt Express ; 7(8): 3151-62, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27570706

RESUMO

Blood flow changes are highly related to neural activities in the retina. It has been reported that neural activity increases when flickering light stimulation of the retina is used. It is known that blood flow changes with flickering light stimulation can be altered in patients with vascular disease and that measurement of flicker-induced vasodilatation is an easily applied tool for monitoring functional microvascular alterations. However, details of distortions in retinal neurovascular coupling associated with major eye diseases are not well understood due to the limitation of existing techniques. In this study, flickering light stimulation was applied to mouse retinas to investigate stimulus evoked hemodynamic responses in individual retinal layers. A spectral domain optical coherence tomography (OCT) angiography imaging system was developed to provide dynamic mapping of hemodynamic responses in the ganglion cell layer, inner plexiform layer, outer plexiform layer and choroid layer before, during and after flickering light stimulation. Experimental results showed hemodynamic responses with different magnitudes and time courses in individual retinal layers. We anticipate that the dynamic OCT angiography of stimulus evoked hemodynamic responses can greatly foster the study of neurovascular coupling mechanisms in the retina, promising new biomarkers for retinal disease detection and diagnosis.

16.
Opt Lett ; 41(12): 2688-91, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27304264

RESUMO

It is technically difficult to construct wide-angle fundus imaging devices due to the complexity of conventional transpupillary illumination and imaging mechanisms. We report here a new method, i.e., trans-palpebral illumination, for wide-angle fundus photography without the need for pupil dilation. By constructing a smartphone-based prototype imaging device, we demonstrated a 152° view in a single-shot image. The unique combination of low-cost smartphone design and automatic illumination optimization promises an affordable solution to conduct telemedicine assessment of eye diseases, which will improve access to eye care for patients in rural and underserved areas.


Assuntos
Técnicas de Diagnóstico Oftalmológico/instrumentação , Oftalmopatias/diagnóstico , Fundo de Olho , Fotografação/métodos , Smartphone , Telemedicina , Dilatação , Luz , Iluminação , Pupila
17.
J Biomed Opt ; 21(6): 65006, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27334933

RESUMO

Rod-dominated transient retinal phototropism (TRP) has been recently observed in freshly isolated mouse and frog retinas. Comparative confocal microscopy and optical coherence tomography revealed that the TRP was predominantly elicited from the rod outer segment (OS). However, the biophysical mechanism of rod OS dynamics is still unknown. Mouse and frog retinal slices, which displayed a cross-section of retinal photoreceptors and other functional layers, were used to test the effect of light stimulation on rod OSs. Time-lapse microscopy revealed stimulus-evoked conformational changes of rod OSs. In the center of the stimulated region, the length of the rod OS shrunk, while in the peripheral region, the rod OS swung toward the center region. Our experimental observation and theoretical analysis suggest that the TRP may reflect unbalanced rod disc-shape changes due to localized visible light stimulation.


Assuntos
Luz , Retina/efeitos da radiação , Segmento Externo da Célula Bastonete/efeitos da radiação , Animais , Anuros , Camundongos , Células Fotorreceptoras de Vertebrados/efeitos da radiação , Fototropismo , Imagem com Lapso de Tempo , Tomografia de Coerência Óptica
18.
Proc SPIE Int Soc Opt Eng ; 97062016 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-28163347

RESUMO

Oblique light stimulation evoked transient retinal phototropism (TRP) has been recently detected in frog and mouse retinas. High resolution microscopy of freshly isolated retinas indicated that the TRP is predominated by rod photoreceptors. Comparative confocal microscopy and optical coherence tomography (OCT) revealed that the TRP predominantly occurred from the photoreceptor outer segment (OS). However, biophysical mechanism of rod OS change is still unknown. In this study, frog retinal slices, which open a cross section of retinal photoreceptor and other functional layers, were used to test the effect of light stimulation on rod OS. Near infrared light microscopy was employed to monitor photoreceptor changes in retinal slices stimulated by a rectangular-shaped visible light flash. Rapid rod OS length change was observed after the stimulation delivery. The magnitude and direction of the rod OS change varied with the position of the rods within the stimulated area. In the center of stimulated region the length of the rod OS shrunk, while in the peripheral region the rod OS tip swung towards center region in the plane perpendicular to the incident stimulus light. Our experimental result and theoretical analysis suggest that the observed TRP may reflect unbalanced disc-shape change due to localized pigment bleaching. Further investigation is required to understand biochemical mechanism of the observed rod OS kinetics. Better study of the TRP may provide a noninvasive biomarker to enable early detection of age-related macular degeneration (AMD) and other diseases that are known to produce retinal photoreceptor dysfunctions.

19.
Optom Vis Sci ; 91(10): 1175-82, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25148220

RESUMO

PURPOSE: This study aimed to validate the mathematical Zernike pupil size scaling from bigger pupils to smaller pupils, and vice versa, by comparing the estimates of the Zernike coefficients with corresponding clinical measurements obtained at different pupil sizes. METHODS: The i.Profiler Plus (Carl Zeiss Vision, Inc, USA) was used to obtain measures of wavefront aberrations for two pupil sizes (3 mm and the maximum natural pupil size) from the right eyes of 28 visually normal subjects (mean [±SD] age, 57 [±7] years) whose maximum pupil size was greater than or equal to 5 mm without pharmacological dilation. Zernike coefficients were estimated for a 3-mm pupil size scaling down from the measured data of the maximum natural pupil size and, similarly, for the maximum pupil size scaling up from the measured data of the 3-mm pupil. RESULTS: The differences between the estimated and measured values were not significantly different (repeated-measures analysis of variance; p > 0.05) over the range of pupil sizes examined, irrespective of whether the estimates were made by scaling up from a small pupil or scaling down from a large pupil. However, the difference between the measured and estimated coefficients was more variable and less systematic when scaling to a larger pupil size when compared with scaling to a smaller pupil size. CONCLUSIONS: Estimation of ocular wavefront aberration coefficients either scaling down from large to smaller pupils or scaling up from smaller to large pupils provides estimates that are not significantly different from clinically measured values. However, when scaling up to a larger pupil size, the estimates are more variable. These findings have implications for pupil scaling on an individual basis, such as in cases of refractive surgery or when using pupil scaling to examine a clinical cohort.


Assuntos
Aberrometria/métodos , Aberrações de Frente de Onda da Córnea/diagnóstico , Modelos Teóricos , Pupila/fisiologia , Aberrações de Frente de Onda da Córnea/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
J Biomed Opt ; 19(5): 056002, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24788371

RESUMO

A critical challenge in biomedical imaging is to optimally balance the trade-off among image resolution, signal-to-noise ratio, and acquisition time. Acquiring a high-resolution image is possible; however, it is either expensive or time consuming or both. Resolution is also limited by the physical properties of the imaging device, such as the nature and size of the input source radiation and the optics of the device. Super-resolution (SR), which is an off-line approach for improving the resolution of an image, is free of these trade-offs. Several methodologies, such as interpolation, frequency domain, regularization, and learning-based approaches, have been developed over the past several years for SR of natural images. We review some of these methods and demonstrate the positive impact expected from SR of retinal images and investigate the performance of various SR techniques. We use a fundus image as an example for simulations.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Retina/anatomia & histologia , Vasos Retinianos/anatomia & histologia , Inteligência Artificial , Teorema de Bayes , Técnicas de Diagnóstico Oftalmológico , Humanos , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...