Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Rev Biotechnol ; 43(6): 884-903, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35968912

RESUMO

Dangers confronting forest ecosystems are many and the strength of these biological systems is deteriorating, thus substantially affecting tree physiology, phenology, and growth. The establishment of genetically engineered trees into degraded woodlands, which would be adaptive to changing climate, could help in subsiding ecological threats and bring new prospects. This should not be resisted due to the apprehension of transgene dispersal in forests. Consequently, it is important to have a deep insight into the genetic structure and phenotypic limits of the reproductive capability of tree stands/population(s) to endure tolerance and survival. Importantly, for a better understanding of genes and their functional mechanisms, gene editing (GeEd) technology is an excellent molecular tool to unravel adaptation progressions. Therefore, GeEd could be harnessed for resolving the allelic interactions for the creation of gene diversity, and transgene dispersal may be alleviated among the population or species in different bioclimatic zones around the globe. This review highlights the potential of the CRISPR/Cas tools in genomic, transcriptomic, and epigenomic-based assorted and programmable alterations of genes in trees that might be able to fix the trait-specific gene function. Also, we have discussed the application of diverse forms of GeEd to genetically improve several traits, such as wood density, phytochemical constituents, biotic and abiotic stress tolerance, and photosynthetic efficiency in trees. We believe that the technology encourages fundamental research in the forestry sector besides addressing key aspects, which might fasten tree breeding and germplasm improvement programs worldwide.


Assuntos
Ecossistema , Edição de Genes , Madeira , Sistemas CRISPR-Cas/genética , Florestas , Árvores/genética , Genoma de Planta/genética
2.
Int J Biometeorol ; 64(9): 1629-1634, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32415620

RESUMO

Populus deltoides is a fast-growing woody species possessing plethora of industrial applications. This species evolutionarily developed unisexual male and female catkin inflorescence on separate trees. Flowering usually occurs during early spring before the development of foliage, where buds appear near axils or at the extending shoots. In 2019, surveys were undertaken to study the flowering pattern of P. deltoides in the states of Punjab, Haryana, Uttar Pradesh and Uttarakhand in northern India. Interestingly, an anomalous flowering behaviour (appearance of off-season male catkins during autumn, i.e. October) was observed in a plantation trial at Kapurthala, Punjab. The male catkins were 2.7-3.1 ± 0.07 cm long and 0.3-0.5 ± 0.03 cm wide, which is significant for flowering and liberation of pollen grains. Preliminary results suggested that climatic factors, such as episodes of high or low temperature and the precipitation variation forcing the tree species to behave differently. Unearthing the climate-driven off-season flowering in other tree species alluded the stimulation of phytohormones, such as gibberellic and salicylic acid concentrations influencing the flowering time, therefore, needs further investigation in case of P. deltoides. Overall, this work provides early clues of changing climatic scenario altering the flowering pattern of a tropical forestry tree species.


Assuntos
Populus , Mudança Climática , Flores , Índia , Estações do Ano , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...