Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Hepatol ; 14(10): 1884-1898, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36340748

RESUMO

BACKGROUND: Chronic liver diseases (CLD) are the major public health burden due to the continuous increasing rate of global morbidity and mortality. The inherent limitations of organ transplantation have led to the development of stem cell-based therapy as a supportive and promising therapeutic option. However, identifying the fate of transplanted cells in vivo represents a crucial obstacle. AIM: To evaluate the potential applicability of DiD dye as a cell labeling agent for long-term, and non-invasive in vivo tracking of transplanted cells in the liver. METHODS: Magnetically sorted, epithelial cell adhesion molecule positive (1 × 106 cells/mL) fetal hepatic progenitor cells were labeled with DiD dye and transplanted into the livers of CLD-severe combined immunodeficiency (SCID) mice. Near-infrared (NIR) imaging was performed for in vivo tracking of the DiD-labeled transplanted cells along with colocalization of hepatic markers for up to 80 d. The existence of human cells within mouse livers was identified using Alu polymerase chain reaction and sequencing. RESULTS: NIR fluorescence imaging of CLD-SCID mice showed a positive fluorescence signal of DiD at days 7, 15, 30, 45, 60, and 80 post-transplantation. Furthermore, positive staining of cytokeratin, c-Met, and albumin colocalizing with DiD fluorescence clearly demonstrated that the fluorescent signal of hepatic markers emerged from the DiD-labeled transplanted cells. Recovery of liver function was also observed with serum levels of glutamic-oxaloacetic transaminase, glutamate-pyruvate transaminase, and bilirubin. The detection of human-specific Alu sequence from the transplanted mouse livers provided evidence for the survival of transplanted cells at day 80. CONCLUSION: DiD-labeling is promising for long-term and non-invasive in vivo cell tracking, and understanding the regenerative mechanisms incurred by the transplanted cells.

2.
Sci Rep ; 6: 26282, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27197891

RESUMO

Intrahepatic and extrahepatic metastases are frequently detected in hepatocellular carcinoma (HCC). Epithelial-mesenchymal transition (EMT) is believed to drive metastasis. There are not many well-established model systems to study EMT in HCC. Here we identified an atypical EMT while characterizing a population of mesenchymal cells in Huh7.5 hepatoma cell cultures. Cells with distinct morphology appeared during geneticin treatment of Huh7.5 cultures. Molecular characterization of geneticin resistant Huh7.5M cells confirmed EMT. Huh7.5M cells expressed cancer stem cell markers. p38MAPK and ERK1/2 were substantially activated in Huh7.5M cells. Their Inhibition elevated E-Cadherin expression with concerted suppression of Vimentin and anchorage independent growth in Huh7.5M cells. TGFß could not induce EMT in Huh7.5 cultures, but enriched mesenchymal populations, similar to geneticin. Huh7.5M cells formed more aggressive solid tumors, primarily comprising cells with epithelial morphology, in nude mice. Canonical EMT-TFs did not participate in this atypical EMT, indicating that the established canonical EMT-TFs do not drive every EMT and there is a dire need to identify additional factors. The system that we characterized is a unique model to study EMT, MET and biphasic TGFß signaling in HCC and offers considerable potential to facilitate more insightful studies on deeper questions in tumor metastasis.


Assuntos
Carcinoma Hepatocelular/patologia , Transição Epitelial-Mesenquimal , Neoplasias Hepáticas/patologia , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Reprogramação Celular , Gentamicinas/farmacologia , Xenoenxertos , Humanos , Neoplasias Hepáticas/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Fatores de Transcrição , Fator de Crescimento Transformador beta/metabolismo , Vimentina/metabolismo
3.
Diabetes ; 64(6): 2028-41, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25552600

RESUMO

Monocyte-to-macrophage differentiation is a critical event that accentuates atherosclerosis by promoting an inflammatory environment within the vessel wall. In this study, we investigated the molecular mechanisms responsible for monocyte-to-macrophage differentiation and, subsequently, the effect of metformin in regressing angiotensin II (Ang-II)-mediated atheromatous plaque formation in ApoE(-/-) mice. AMPK activity was dose and time dependently downregulated during phorbol myristate acetate (PMA)-induced monocyte-to-macrophage differentiation, which was accompanied by an upregulation of proinflammatory cytokine production. Of note, AMPK activators metformin and AICAR significantly attenuated PMA-induced monocyte-to-macrophage differentiation and proinflammatory cytokine production. However, inhibition of AMPK activity alone by compound C was ineffective in promoting monocyte-to-macrophage differentiation in the absence of PMA. On the other hand, inhibition of c-Jun N-terminal kinase activity inhibited PMA-induced inflammation but not differentiation, suggesting that inflammation and differentiation are independent events. In contrast, inhibition of STAT3 activity inhibited both inflammation and monocyte-to-macrophage differentiation. By decreasing STAT3 phosphorylation, metformin and AICAR through increased AMPK activation caused inhibition of monocyte-to-macrophage differentiation. Metformin attenuated Ang-II-induced atheromatous plaque formation and aortic aneurysm in ApoE(-/-) mice partly by reducing monocyte infiltration. We conclude that the AMPK-STAT3 axis plays a pivotal role in regulating monocyte-to-macrophage differentiation and that by decreasing STAT3 phosphorylation through increased AMPK activity, AMPK activators inhibit monocyte-to-macrophage differentiation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aterosclerose/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Metformina/farmacologia , Metformina/uso terapêutico , Monócitos/citologia , Monócitos/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Ácidos Polimetacrílicos/farmacologia
4.
Exp Cell Res ; 327(1): 91-101, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-24907653

RESUMO

Targeted molecular imaging to detect changes in the structural and functional organization of tissues, at the molecular level, is a promising approach for effective and early diagnosis of diseases. Quantitative and qualitative changes in type I collagen, which is a major component in the extra cellular matrix (ECM) of skin and other vital organs like lung, liver, heart and kidneys, are often associated with the pathophysiology of these organs. We have synthesized a fluorescent probe that comprises collagelin, a specific collagen binding peptide, coupled to fluorescent porphyrin that can effectively detect abnormal deposition of collagen in live tissues by emitting fluorescence in the near infra red (NIR) region. In this report we have presented the methodology for coupling of 5-(4-carboxy phenyl)-10, 15, 20-triphenyl porphyrin (C-TPP) to the N-terminal of collagelin or to another mutant peptide (used as a control). We have evaluated the efficacy of these fluorescent peptides to detect collagen deposition in live normal and abnormal tissues. Our results strongly suggest that porphyrin-tagged collagelin can be used as an effective probe for the non invasive in vivo detection of tissue fibrosis, especially in the liver.


Assuntos
Colágeno/metabolismo , Corantes Fluorescentes/metabolismo , Imagem Molecular/métodos , Peptídeos/metabolismo , Animais , Fibrose/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Porfirinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...