Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicon ; 139: 58-65, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28919458

RESUMO

Anthrax associated causalities in humans and animals are implicated mainly due to the action of two exotoxins that are secreted by the bacterium Bacillus antharcis during the infection. These exotoxins comprise of three protein components namely protective antigen (PA), lethal factor (LF) and edema factor (EF). The protective antigen is the common toxin component required to form both lethal toxin (LeTx) and edema toxin (EdTx). The LeTx is formed, when PA combines with LF and EdTx is formed when PA combines with EF. Therapeutic interventions aiming to neutralize these key effectors of anthrax pathology would therefore, provide an effective means to counter the toxicity imposed by the anthrax toxins on the host. The present work describes the lethal toxin neutralization potential of polyclonal antisera developed against the individual domains of the protective antigen component of the anthrax toxin. The individual domains were produced as recombinant proteins in E. coli and validated with peptide mass fingerprinting by MALDI-TOF analysis and corresponding mice polyclonal antisera by western blotting. Each domain specific antibody titre and isotype was ascertained by ELISA. The isotyping revealed the predominance of IgG1 isotype. The toxin neutralizing potential of these domain specific antisera were evaluated by in-vitro cell viability MTT assay, employing J774.1 mouse macrophage cell line against LeTx (0.25 µg ml-1 PA and 0.125 µg ml-1 LF concentrations). Among the four domain specific antisera, the antiserum against PA domain IV could neutralize LeTx with high efficiency. No significant neutralization of LeTx was observed with other domain specific antibodies. Results indicate that antibodies to r-PA domain IV could be explored further as therapeutic anti toxin molecule along with appropriate antibiotic regimens against anthrax.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Soros Imunes/imunologia , Animais , Antraz/imunologia , Antígenos de Bactérias/toxicidade , Proteínas de Bactérias/química , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/química , Toxinas Bacterianas/toxicidade , Linhagem Celular , Escherichia coli , Exotoxinas , Camundongos , Testes de Neutralização , Domínios Proteicos , Proteínas Recombinantes
2.
Appl Microbiol Biotechnol ; 100(19): 8439-51, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27364624

RESUMO

Bacillus anthracis chimeric molecule PALFn, comprising the immunodominant domains of protective antigen (PA) and lethal factor (LF), has been developed in the past and has been shown to confer enhanced protection against anthrax in mouse model when challenged with anthrax lethal toxin (LeTx). However, the immunological correlates for this chimeric antigen, both in terms of humoral as well as cell-mediated immune responses, have not been described in detail. To address this gap, we have determined the immunological responses both at humoral as well as cellular levels for the protection conferred by the novel chimeric antigen PALFn constructed in our laboratory in comparison to PA antigen. The biological functionality of the chimeric antigen was ascertained by the trypsin digestion assay. The trypsin cleavage activated the functionality of PALFn and rendered it to interact and bind with the LF molecule. Similarly, the LFn component in the chimera could independently interact and bind to the trypsin-activated wild-type PA. Further, it was observed that the PALFn-immunized mice sera could readily react to both PA and LF antigens while PA-immunized mice sera showed reaction to PA and PALFn alone and not to the individual LF antigen. The in vitro toxin neutralizing ability of PALFn antisera on macrophage cell line J774.1 was robust but with 1.3-fold lesser titer than PA-immunized antisera. PALFn-immunized mouse splenocytes showed a significant lymphocyte proliferation when stimulated with PALFn. There was a remarkable increase in the level of interleukin-2 (IL-2), interleukin-4 (IL-4), interleukin 10 (IL-10), interferon-γ (IFN- γ), and tumor necrosis factor α (TNFα) from PALFn- and PA-stimulated splenocytes. In addition, there was a significant increase in antigen-specific CD4+ and CD8+ T-cell counts from both PALFn- and PA-immunized mouse splenocytes. The results clearly demonstrate the ability of chimeric molecule PALFn in eliciting robust humoral and cell-mediated immune responses in mouse model that is parallel to the wild-type PA but has additional anti-LF antibody response. Considering the enhanced protection offered by the chimera PALFn, we can conclude that it can be a better alternative to the wild-type PA-based recombinant vaccine against anthrax.


Assuntos
Vacinas contra Antraz/imunologia , Antígenos de Bactérias/imunologia , Bacillus anthracis/imunologia , Toxinas Bacterianas/imunologia , Proteínas Recombinantes de Fusão/imunologia , Animais , Antraz/prevenção & controle , Vacinas contra Antraz/administração & dosagem , Vacinas contra Antraz/genética , Anticorpos Antibacterianos/sangue , Anticorpos Neutralizantes/sangue , Antígenos de Bactérias/genética , Antitoxinas/sangue , Toxinas Bacterianas/genética , Linhagem Celular , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Linfócitos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Testes de Neutralização , Proteínas Recombinantes de Fusão/genética , Baço/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
3.
Mol Biol Int ; 2016: 4732791, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26966576

RESUMO

Bacillus anthracis secretory protein protective antigen (PA) is primary candidate for subunit vaccine against anthrax. Attempts to obtain large quantity of PA from Escherichia coli expression system often result in the formation of insoluble inclusion bodies. Therefore, it is always better to produce recombinant proteins in a soluble form. In the present study, we have obtained biologically active recombinant PA in small scale E. coli shake culture system using three different expression constructs. The PA gene was cloned in expression vectors bearing trc, T5, and T7 promoters and transformed into their respective E. coli hosts. The growth conditions were optimized to obtain maximum expression of PA in soluble form. The expression construct PA-pET32c in DE3-pLysS E. coli host resulted in a maximum production of soluble PA (15 mg L(-1)) compared to other combinations. Purified PA was subjected to trypsin digestion and binding assay with lethal factor to confirm the protein's functionality. Biological activity was confirmed by cytotoxicity assay on J774.1 cells. Balb/c mice were immunized with PA and the immunogenicity was tested by ELISA and toxin neutralization assay. This study highlights the expression of soluble and biologically active recombinant PA in larger quantity using simpler E. coli production platform.

4.
Toxicon ; 108: 108-14, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26472254

RESUMO

Bacillus anthracis lethal toxin (LeTx) is the principle factor responsible for toxaemia and anthrax related death. Lethal toxin consist of two proteins viz protective antigen (PA) and lethal factor which combines in a typical fashion similar to other toxins belonging to A-B toxin super family. The amount of LeTx required to kill a particular organism generally differs among strains owing to their geographical distributions and genetic variation. In the present study, we have cloned PA and LF genes from B. anthracis clinical isolate of Indian origin and expressed them in soluble form employing Escherichia coli expression system. Both the proteins were purified to near homogeneity level using Immobilized metal ion affinity chromatography (IMAC). Further we have used equal ratio of both the proteins to form LeTx and determined its acute toxicity level in Balb/c mice by graphical method of Miller and Tainter. The LD50 value of LeTx by intravenous (i.v) route was found to be 0.97 ± 0.634 mg kg(-1) Balb/c mice. This study highlights the expression of recombinant LeTx from E. coli and assessing its acute toxicity level in experimental mouse model.


Assuntos
Antígenos de Bactérias/toxicidade , Bacillus anthracis , Toxinas Bacterianas/toxicidade , Animais , Antígenos de Bactérias/genética , Toxinas Bacterianas/genética , Cromatografia de Afinidade , Clonagem Molecular , Escherichia coli/genética , Feminino , Geografia , Índia , Dose Letal Mediana , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/metabolismo , Testes de Toxicidade Aguda
5.
Indian J Microbiol ; 53(1): 41-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24426077

RESUMO

The need for a rapid detection and characterization of biowarfare (BW) agents cannot be over emphasized. With diverse array of potential BW pathogen available presently, rapid identification of the pathogen is crucial, so that specific therapy and control measures can be initiated. We have developed a multiplex polymerase chain reaction based reverse line blot macroarray to simultaneously detect four pathogens of BW importance viz. Bacillus anthracis, Yersinia pestis, Brucella melitensis and Burkholderia pseudomallei. The multiplex PCR utilizes 14 pairs of primers targeting 18 specific markers. These markers include genes which are genus specific, species-specific chromosomal sequences and virulence markers of plasmid origin. The assay was evaluated on various human, environment and animal isolates. The assay w successful in simultaneous detection and characterization of isolates of the four pathogens on as a single platform with sensitivity ranging from 0.3 pg to 0.3 ng of genomic DNA. The assay was able to detect 5 × 10(2) cfu/ml for B. anthracis, 8 × 10(2) cfu/ml for Yersinia sp., 1.4 × 10(2) cfu/ml for B. melitensis and 4 × 10(2) cfu/ml for B. pseudomallei.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...