Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 10(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630616

RESUMO

Genomic epidemiology enhances the ability to detect and refute methicillin-resistant Staphylococcus aureus (MRSA) outbreaks in healthcare settings, but its routine introduction requires further evidence of benefits for patients and resource utilization. We performed a 12 month prospective study at Cambridge University Hospitals NHS Foundation Trust in the UK to capture its impact on hospital infection prevention and control (IPC) decisions. MRSA-positive samples were identified via the hospital microbiology laboratory between November 2018 and November 2019. We included samples from in-patients, clinic out-patients, people reviewed in the Emergency Department and healthcare workers screened by Occupational Health. We sequenced the first MRSA isolate from 823 consecutive individuals, defined their pairwise genetic relatedness, and sought epidemiological links in the hospital and community. Genomic analysis of 823 MRSA isolates identified 72 genetic clusters of two or more isolates containing 339/823 (41 %) of the cases. Epidemiological links were identified between two or more cases for 190 (23 %) individuals in 34/72 clusters. Weekly genomic epidemiology updates were shared with the IPC team, culminating in 49 face-to-face meetings and 21 written communications. Seventeen clusters were identified that were consistent with hospital MRSA transmission, discussion of which led to additional IPC actions in 14 of these. Two outbreaks were also identified where transmission had occurred in the community prior to hospital presentation; these were escalated to relevant IPC teams. We identified 38 instances where two or more in-patients shared a ward location on overlapping dates but carried unrelated MRSA isolates (pseudo-outbreaks); research data led to de-escalation of investigations in six of these. Our findings provide further support for the routine use of genomic epidemiology to enhance and target IPC resources.


Assuntos
Infecção Hospitalar , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Infecção Hospitalar/microbiologia , Infecções Estafilocócicas/microbiologia , Estudos Prospectivos , Genômica
2.
mSphere ; 7(6): e0028322, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36286527

RESUMO

Genomic epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) could transform outbreak investigations, but its clinical introduction is hampered by the lack of automated data analysis tools to rapidly and accurately define transmission based on sequence relatedness. We aimed to evaluate a fully automated bioinformatics system for MRSA genome analysis versus a bespoke researcher-led manual informatics pipeline. We analyzed 781 MRSA genomes from 777 consecutive patients identified over a 9-month period in a clinical microbiology laboratory in the United Kingdom. Outputs were bacterial species identification, detection of mec genes, assignment to sequence types (STs), identification of pairwise relatedness using a definition of ≤25 single nucleotide polymorphisms (SNPs) apart, and use of genetic relatedness to identify clusters. There was full concordance between the two analysis methods for species identification, detection of mec genes, and ST assignment. A total of 3,311 isolate pairs ≤25 SNPs apart were identified by at least one method. These had a median (range) SNP difference between the two methods of 1.2 SNPs (0 to 22 SNPs), with most isolate pairs (87%) varying by ≤2 SNPs. This similarity increased when the research pipeline was modified to use a clonal-complex-specific reference (median 0 SNP difference, 91% varying by ≤2 SNPs). Both pipelines clustered 338 isolates/334 patients into 66 unique clusters based on genetic relatedness. We conclude that the automated transmission detection tool worked at least as well as a researcher-led manual analysis and indicates how such tools could support the rapid use of MRSA genomic epidemiology in infection control practice. IMPORTANCE It has been clearly established that genome sequencing of MRSA improves the accuracy of health care-associated outbreak investigations, including the confirmation and exclusion of outbreaks and identification of patients involved. This could lead to more targeted infection control actions but its use in clinical practice is prevented by several barriers, one of which is the availability of genome analysis tools that do not depend on specialist knowledge to analyze or interpret the results. We evaluated a prototype of a fully automated bioinformatics system for MRSA genome analysis versus a bespoke researcher-led manual informatics pipeline, using genomes from 777 patients over a period of 9 months. The performance was at least equivalent to the researcher-led manual genomic analysis. This indicates the feasibility of automated analysis and represents one more step toward the routine use of pathogen sequencing in infection prevention and control practice.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Análise de Sequência de DNA , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Genoma Bacteriano , Surtos de Doenças/prevenção & controle
3.
J Clin Microbiol ; 57(11)2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31462548

RESUMO

Genomic surveillance that combines bacterial sequencing and epidemiological information will become the gold standard for outbreak detection, but its clinical translation is hampered by the lack of automated interpretation tools. We performed a prospective pilot study to evaluate the analysis of methicillin-resistant Staphylococcus aureus (MRSA) genomes using the Next Gen Diagnostics (NGD) automated bioinformatics system. Seventeen unselected MRSA-positive patients were identified in a clinical microbiology laboratory in England over a period of 2 weeks in 2018, and 1 MRSA isolate per case was sequenced on the Illumina MiniSeq instrument. The NGD system automatically activated after sequencing and processed fastq folders to determine species, multilocus sequence type, the presence of a mec gene, antibiotic susceptibility predictions, and genetic relatedness based on mapping to a reference MRSA genome and detection of pairwise core genome single-nucleotide polymorphisms. The NGD system required 90 s per sample to automatically analyze data from each run, the results of which were automatically displayed. The same data were independently analyzed using a research-based approach. There was full concordance between the two analysis methods regarding species (S. aureus), detection of mecA, sequence type assignment, and detection of genetic determinants of resistance. Both analysis methods identified two MRSA clusters based on relatedness, one of which contained 3 cases that were involved in an outbreak linked to a clinic and ward associated with diabetic patient care. We conclude that, in this pilot study, the NGD system provided rapid and accurate data that could support infection control practices.


Assuntos
Automação Laboratorial , Biologia Computacional , Surtos de Doenças , Genoma Bacteriano , Infecções Estafilocócicas/diagnóstico , Antibacterianos/farmacologia , Técnicas de Tipagem Bacteriana , Inglaterra , Humanos , Meticilina/farmacologia , Staphylococcus aureus Resistente à Meticilina/classificação , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Tipagem de Sequências Multilocus , Projetos Piloto , Estudos Prospectivos , Análise de Sequência de DNA , Infecções Estafilocócicas/microbiologia , Sequenciamento Completo do Genoma
4.
Wellcome Open Res ; 3: 119, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687791

RESUMO

Background: Human parainfluenza viruses (HPIVs) are significant causes of both upper and lower respiratory tract infections with type 3 (HPIV3) causing the most severe disease in the immunocompromised cohorts.  The objective of this study was to analyse the epidemiological nature of a cluster of cases of HPIV3 in a pediatric oncology unit of a major teaching hospital. Methods: In order to determine whether the activity observed represented a deviation from the norm, seasonal trends of HPIV3 in the surrounding geographical area as well as on the ward in question were analysed.  The genetic link between cases was established by the phylogenetic analysis of the non-coding hypervariable region between the M (Matrix) and F (fusion) genes of HPIV3. The 15 cases involved and 15 unrelated cases were sequenced.  Transmission routes were subsequently inferred and visualized using Konstanz Information Miner (KNIME) 3.3.2. Results: Of the 15 cases identified, 14 were attributed to a point source outbreak. Two out of 14 outbreak cases were found to differ by a single mutation A182C. The outbreak strain was also seen in 1 out of 15 unrelated cases, indicating that it was introduced from the community. Transmission modeling was not able to link all the cases and establish a conclusive chain of transmission. No staff were tested during the outbreak period. No deaths occurred as a result of the outbreak. Conclusion: A point source outbreak of HPIV3 was recognized post factum on an oncology pediatric unit in a major teaching hospital. This raised concern about the possibility of a future more serious outbreak. Weaknesses in existing systems were identified and a new dedicated respiratory virus monitoring system introduced.  Pediatric oncology units require sophisticated systems for early identification of potentially life-threatening viral outbreaks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...