Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39026731

RESUMO

The circulation of seasonal influenza A viruses (IAVs) in humans relies on effective evasion and subversion of the host immune response. While the evolution of seasonal H1N1 and H3N2 viruses to avoid humoral immunity is well characterized, relatively little is known about the evolution of innate immune antagonism phenotypes in these viruses. Numerous studies have established that only a small subset of infected cells is responsible for initiating the type I and type III interferon (IFN) response during IAV infection, emphasizing the importance of single cell studies to accurately characterize the IFN response during infection. We developed a flow cytometry-based method to examine transcriptional changes in IFN and interferon stimulated gene (ISG) expression at the single cell level. We observed that NS segments derived from seasonal H3N2 viruses are more efficient at antagonizing IFN signaling but less effective at suppressing IFN induction, compared to the pdm2009 H1N1 lineage. We compared a collection of NS segments spanning the natural history of the current seasonal IAV lineages and demonstrate long periods of stability in IFN antagonism potential, punctuated by occasional phenotypic shifts. Altogether, our data reveal significant differences in how seasonal and pandemic H1N1 and H3N2 viruses antagonize the human IFN response at the single cell level.

2.
bioRxiv ; 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37333071

RESUMO

Several microglia-expressed genes have emerged as top risk variants for Alzheimer's disease (AD). Impaired microglial phagocytosis is one of the main proposed outcomes by which these AD-risk genes may contribute to neurodegeneration, but the mechanisms translating genetic association to cellular dysfunction remain unknown. Here we show that microglia form lipid droplets (LDs) upon exposure to amyloid-beta (Aß), and that their LD load increases with proximity to amyloid plaques in brains from human patients and the AD mouse model 5xFAD. LD formation is dependent upon age and disease progression and is more prominent in the hippocampus in mice and humans. Despite variability in LD load between microglia from male versus female animals and between cells from different brain regions, LD-laden microglia exhibited a deficit in Aß phagocytosis. Unbiased lipidomic analysis identified a substantial decrease in free fatty acids (FFAs) and a parallel increase in triacylglycerols (TAGs) as the key metabolic transition underlying LD formation. We demonstrate that DGAT2, a key enzyme for the conversion of FFAs to TAGs, promotes microglial LD formation, is increased in microglia from 5xFAD and human AD brains, and that inhibiting DGAT2 improved microglial uptake of Aß. These findings identify a new lipid-mediated mechanism underlying microglial dysfunction that could become a novel therapeutic target for AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...