Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 226(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37937662

RESUMO

Butterfly scales are among the richest natural sources of optical nanostructures, which produce structural color and iridescence. Several recurring nanostructure types have been described, such as ridge multilayers, gyroids and lower lamina thin films. While the optical mechanisms of these nanostructure classes are known, their phylogenetic distributions and functional ranges have not been described in detail. In this Review, we examine a century of research on the biological production of structural colors, including their evolution, development and genetic regulation. We have also created a database of more than 300 optical nanostructures in butterflies and conducted a meta-analysis of the color range, abundance and phylogenetic distribution of each nanostructure class. Butterfly structural colors are ubiquitous in short wavelengths but extremely rare in long wavelengths, especially red. In particular, blue wavelengths (around 450 nm) occur in more clades and are produced by more kinds of nanostructures than other hues. Nanostructure categories differ in prevalence, phylogenetic distribution, color range and brightness. For example, lamina thin films are the least bright; perforated lumen multilayers occur most often but are almost entirely restricted to the family Lycaenidae; and 3D photonic crystals, including gyroids, have the narrowest wavelength range (from about 450 to 550 nm). We discuss the implications of these patterns in terms of nanostructure evolution, physical constraint and relationships to pigmentary color. Finally, we highlight opportunities for future research, such as analyses of subadult and Hesperid structural colors and the identification of genes that directly build the nanostructures, with relevance for biomimetic engineering.


Assuntos
Borboletas , Nanoestruturas , Animais , Filogenia , Asas de Animais/fisiologia , Nanoestruturas/química , Visão Ocular , Cor
2.
Elife ; 92020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32254023

RESUMO

In diverse organisms, nanostructures that coherently scatter light create structural color, but how such structures are built remains mysterious. We investigate the evolution and genetic regulation of butterfly scale laminae, which are simple photonic nanostructures. In a lineage of buckeye butterflies artificially selected for blue wing color, we found that thickened laminae caused a color shift from brown to blue. Deletion of the optix patterning gene also altered color via lamina thickening, revealing shared regulation of pigments and lamina thickness. Finally, we show how lamina thickness variation contributes to the color diversity that distinguishes sexes and species throughout the genus Junonia. Thus, quantitatively tuning one dimension of scale architecture facilitates both the microevolution and macroevolution of a broad spectrum of hues. Because the lamina is an intrinsic component of typical butterfly scales, our findings suggest that tuning lamina thickness is an available mechanism to create structural color across the Lepidoptera.


From iridescent blues to vibrant purples, many butterflies display dazzling 'structural colors' created not by pigments but by microscopic structures that interfere with light. For instance, the scales that coat their wings can contain thin films of chitin, the substance that normally makes the external skeleton of insects. In slim layers, however, chitin can also scatter light to produce color, the way that oil can create iridescence at the surface of water. The thickness of the film, which is encoded by the genes of the butterfly, determines what color will be produced. Yet, little is known about how common thin films are in butterflies, exactly how genetic information codes for them, and how their thickness and the colors they produce can evolve. To investigate, Thayer et al. used a technique called Helium Ion Microscopy and examined the wings of ten related species of butterflies, showing that thin film structures were present across this sample. However, the different species have evolved many different structural colors over the past millions of years by changing the thickness of the films. Next, Thayer et al. showed that this evolution could be reproduced at a faster pace in the laboratory using common buckeye butterflies. These insects mostly have brown wings, but they can have specks of blue created by thin film structures. Individuals with more blue on their wings were mated and over the course of a year, the thickness of the film structures increased by 74%, leading to shiny blue butterflies. Deleting a gene called optix from the insects also led to blue wings. Optix was already known to control the patterns of pigments in butterflies, but it now appears that it controls structural colors as well. From solar panels to new fabrics, microscopic structures that can scatter light are useful in a variety of industries. Understanding how these elements exist and evolve in organisms may help to better design them for human purposes.


Assuntos
Escamas de Animais/química , Borboletas/genética , Cor , Regulação da Expressão Gênica , Pigmentação , Asas de Animais/anatomia & histologia , Escamas de Animais/fisiologia , Animais , Borboletas/anatomia & histologia , Evolução Molecular , Feminino , Masculino , Nanoestruturas , Fenótipo , Asas de Animais/química
3.
Nanoscale ; 11(3): 1403-1409, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30604814

RESUMO

Focused ion beam milling of ∼200 nm polymer thin films is investigated using a multibeam ion microscope equipped with a gallium liquid metal ion source and a helium/neon gas field-ionization source. The quality of gallium, neon, and helium ion milled edges in terms of ion implantation artifacts is analyzed using a combination of helium ion microscopy, transmission electron microscopy and light microscopy. Results for a synthetic polymer thin film, in the form of cryo-ultramicrotomed sections from a co-extruded polymer multilayer, and a biological polymer thin film, in the form of the base layer of a butterfly wing scale, are presented. While gallium and neon ion milling result in the implantation of ions up to tens of nanometers from the milled edge and local thinning near the edge, helium ion milling produces much sharper edges with dramatically reduced implantation. These effects can be understood in terms of the minimal lateral scatter and larger stopping distance of helium compared with the heavier ions, whereby due to the thin film geometry, most of the incident helium ions will pass straight through the material. The basic result demonstrated here for polymer thin films is also expected for thin films of hard materials such as metals and ceramics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...