Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 37(33): 10071-10078, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34286995

RESUMO

Slippery liquid infused porous surfaces (SLIPS) are an important class of repellent materials, comprising micro/nanotextures infused with a lubricating liquid. Unlike superhydrophobic surfaces, SLIPS do not rely on a stable air-liquid interface and thus can better manage low surface tension fluids, are less susceptible to damage under physical stress, and are able to self-heal. However, these collective properties are only efficient as long as the lubricant remains infused, which has proved challenging. We hypothesized that, in comparison to a nanohole and nanopillar morphology, the "hybrid" morphology of a hole within a nanopillar, namely a nanotube, would be able to retain and redistribute lubricant more effectively, owing to capillary forces trapping a reservoir of lubricant within the tube, while lubricant between tubes can facilitate redistribution to depleted areas. By virtue of recent fabrication advances in spacer defined intrinsic multiple patterning (SDIMP), we fabricated an array of silicon nanotubes and equivalent arrays of nanoholes and nanopillars (pitch, 560 nm; height, 2 µm). After infusing the nanostructures (prerendered hydrophobic) with lubricant Krytox 1525, we probed the lubricant stability under dynamic conditions and correlated the degree of the lubricant film discontinuity to changes in the contact angle hysteresis. As a proof of concept, the durability test, which involved consecutive deposition of droplets onto the surface amounting to 0.5 L, revealed 2-fold and 1.5-fold enhancements of lubricant retention in nanotubes in comparison to nanopillars and nanoholes, respectively, showing a clear trajectory for prolonging the lifetime of a slippery surface.

2.
ACS Nano ; 14(9): 12091-12100, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32813489

RESUMO

Periodic nanotube arrays render enhanced functional properties through their interaction with light and matter, but to reach optimal performance for technologically prominent applications, such as wettability or photonics, structural fine-tuning is essential. Nonetheless, a universal and scalable method providing independent dimension control, high aspect ratios, and the prospect of further structural complexity remains unachieved. Here, we answer this need through an atomic layer deposition (ALD)-enabled multiple patterning. Unlike previous methods, the ALD-deposited spacer is applied directly on the prepatterned target substrate material, serving as an etching mask to generate a multitude of tailored nanotubes. By concept iteration, we further realize concentric and/or binary nanoarrays in a number of industrially important materials such as silicon, glass, and polymers. To demonstrate the achieved quality and applicability of the structures, we probe how nanotube fine-tuning induces broadband antireflection and present a surface boasting extremely low reflectance of <1% across the wavelength range of 300-1050 nm.

3.
Light Sci Appl ; 9: 6, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31969981

RESUMO

In single microdisks, embedded active emitters intrinsically affect the cavity modes of the microdisks, resulting in trivial symmetric backscattering and low controllability. Here we demonstrate macroscopic control of the backscattering direction by optimizing the cavity size. The signature of the positive and negative backscattering directions in each single microdisk is confirmed with two strongly coupled microdisks. Furthermore, diabolical points are achieved at the resonance of the two microdisks, which agrees well with theoretical calculations considering the backscattering directions. Diabolical points in active optical structures pave the way for an implementation of quantum information processing with geometric phase in quantum photonic networks.

4.
Phys Rev Lett ; 122(8): 087401, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932617

RESUMO

Large coupling strengths in exciton-photon interactions are important for the quantum photonic network, while strong cavity-quantum dot interactions have been focused on s-shell excitons with small coupling strengths. Here we demonstrate strong interactions between cavities and p-shell excitons with a great enhancement by the in situ wave-function control. The p-shell excitons are demonstrated with much larger wave-function extents and nonlocal interactions beyond the dipole approximation. Then the interaction is tuned from the nonlocal to the local regime by the wave function shrinking, during which the enhancement is obtained. A large coupling strength of 210 µeV has been achieved, indicating the great potential of p-shell excitons for coherent information exchange. Furthermore, we propose a distributed delay model to quantitatively explain the coupling strength variation, revealing the intertwining of excitons and photons beyond the dipole approximation.

5.
Phys Rev Lett ; 120(21): 213901, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29883144

RESUMO

Two-photon Rabi splitting in a cavity-dot system provides a basis for multiqubit coherent control in a quantum photonic network. Here we report on two-photon Rabi splitting in a strongly coupled cavity-dot system. The quantum dot was grown intentionally large in size for a large oscillation strength and small biexciton binding energy. Both exciton and biexciton transitions couple to a high-quality-factor photonic crystal cavity with large coupling strengths over 130 µeV. Furthermore, the small binding energy enables the cavity to simultaneously couple with two exciton states. Thereby, two-photon Rabi splitting between the biexciton and cavity is achieved, which can be well reproduced by theoretical calculations with quantum master equations.

6.
J Low Temp Phys ; 193(3): 196-202, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30839694

RESUMO

We report on the investigation of titanium nitride (TiN) thin films deposited via atomic layer deposition (ALD) for microwave kinetic inductance detectors (MKID). Using our in-house ALD process, we have grown a sequence of TiN thin films (thickness 15, 30, 60 nm). The films have been characterised in terms of superconducting transition temperature T c , sheet resistance R s and microstructure. We have fabricated test resonator structures and characterised them at a temperature of 300 mK. At 350 GHz, we report an optical noise equivalent power NEP opt ≈ 2.3 × 10 - 15 W / Hz , which is promising for passive terahertz imaging applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...