Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sustain Chem Eng ; 12(23): 8860-8870, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38872956

RESUMO

Tandem photovoltaics applying perovskite on silicon are considered to be a possible route to sustaining continuous efficiency improvements and price reductions. A meaningful market share for such tandems is, however, at least a decade away. Herein, a comprehensive prospective life cycle assessment was conducted, comparing the full life cycle of monofacial and bifacial silicon/perovskite tandem panels with single-junction silicon panels produced up to 2050. The end-of-life included the recovery of silicon and silver. Climate change impacts per kilowatt hour were projected to decrease by two-thirds over time. Tandem panels are expected to reach impacts of 8-10 g CO2-eq/kWh in 2050, while single-junction panels may reach 11-13 g CO2-eq/kWh in 2050. Other midpoint impact categories with substantial contributions to damaging human health and ecosystem quality were toxicity, particulate matter formation, and acidification, with tandems having lower impacts in each category. Reductions in impacts over time are mainly the result of grid mix decarbonization and panel efficiency improvements. Balance-of-system and recycling were found to contribute substantially to these impact categories. To ensure that tandem panels provide environmental benefits, annual degradation rates should not exceed 1% for monofacial or 3% for bifacial tandems, and refurbishment of panels with advanced degradation is crucial.

2.
ACS Appl Energy Mater ; 6(22): 11429-11432, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38037631

RESUMO

Nonequal current generation in the cells of a photovoltaic module, e.g., due to partial shading, leads to operation in reverse bias. This quickly causes a significant efficiency loss in perovskite solar cells. We report a more quantitative investigation of the reverse bias degradation. Various small reverse biases (negative voltages) were applied for different durations. After normalizing the applied voltages with the breakdown voltages, we found similar dependences of the reverse bias current and the degradation rate. We draw conclusions regarding possible degradation mechanisms and propose a way to increase the comparability of degradation rates for comparing different perovskite solar cells.

3.
J Vis Exp ; (140)2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30346379

RESUMO

The levelized cost of electricity (LCOE) of photovoltaic (PV) systems is determined by, among other factors, the PV module reliability. Better prediction of degradation mechanisms and prevention of module field failure can consequently decrease investment risks as well as increase the electricity yield. An improved knowledge level can for these reasons significantly decrease the total costs of PV electricity. In order to better understand and minimize the degradation of PV modules, the occurring degradation mechanisms and conditions should be identified. This should preferably happen under combined stresses, since modules in the field are also simultaneously exposed to multiple stress factors. Therefore, two 'Combined Stress test with in situ measurement' setups have been designed and constructed. These setups allow the simultaneous use of humidity, temperature, illumination, and electrical biases as independently controlled stress factors on solar cells and minimodules. The setups also allow real-time monitoring of the electrical properties of these samples. This protocol presents these setups and describes the experimental possibilities. Moreover, results obtained with these setups are also presented: various examples about the influence of both deposition and degradation conditions on the stability of thin film Cu(In,Ga)Se2 (CIGS) as well as Cu2ZnSnSe4 (CZTS) solar cells are described. Results on the temperature dependency of CIGS solar cells are also presented.


Assuntos
Fontes de Energia Elétrica , Energia Solar , Cobre/química , Gálio/química , Índio/química , Cinética , Selênio/química , Temperatura
4.
J Phys Chem B ; 111(7): 1567-73, 2007 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-17263569

RESUMO

In protein crystallography, spherulites are considered the result of a failed crystallization experiment. Understanding the formation of these structures may contribute to finding methods to prevent their formation. Here, we present an in situ study on lysozyme spherulites grown from sodium nitrate and sodium thiocyanate solutions, investigating their morphology and growth kinetics using optical microscopy. In a morphodrom, we indicate the conditions at which spherulites form for the lysozyme-nitrate system, showing that liquid-liquid phase separation is not a prerequisite to form sheaflike spherulites and that supersaturation is not the only factor determining their creation. Despite their sheaflike morphology, the spherulites all appear to be formed through heterogeneous nucleation. The spherulites are of a new polymorphic form and are less stable than the monoclinic form. For a single needle, growth kinetics indicate surface processes to be the rate-limiting step during growth, but for an entire spherulite volume, diffusion still plays a role. Spherulites simulated by using a time-dependent, tip-splitting model are found to compare well to experimentally observed spherulites.


Assuntos
Cristalização/métodos , Muramidase/química , Muramidase/ultraestrutura , Nitratos/química , Tiocianatos/química , Cinética , Microscopia Confocal , Conformação Proteica , Soluções/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...