Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(17): 19282-19294, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38708233

RESUMO

This work presented the influence of metal oxides as the support for silver-supported catalysts on the catalytic oxidation of diesel particulate matter (DPM). The supports selected to be used in this work were CeO2 (reducible), ZnO (semiconductor), TiO2 (reducible and semiconductor), and Al2O3 (acidic). The properties of the synthesized catalysts were investigated using XRD, TEM, H2-TPR, and XPS techniques. The DPM oxidation activity was performed using the TGA method. Different states of silver (e.g., Ag° and Ag+) were formed with different concentrations and affected the performance of the DPM oxidation. Ag2O and lattice oxygen, which were mainly generated by Ag/ZnO and Ag/CeO2, were responsible for combusting the VOCs. The metallic silver (Ag°) formed primarily on Ag/Al2O3 and Ag/TiO2 was the main component promoting soot combustion. Contact between the catalyst and DPM had a minor effect on VOC oxidation but significantly affected the soot oxidation activity.

2.
ACS Omega ; 8(32): 29437-29447, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37599922

RESUMO

This work presented the kinetic analysis of devolatilized diesel-soot combustion accelerated by Ag/Al2O3 and Ag/CeO2 catalysts. Isoconversional and master-plots techniques were employed to estimate activation energy and identify the reaction model. The apparent activation energy of uncatalyzed soot oxidation was 101.85 kJ/mol, and it was reduced to 61.85 and 82.78 kJ/mol for the combustion catalyzed by Ag/Al2O3 and Ag/CeO2, respectively. The reaction-order model, f(α) = (1- α)n, with n of 1.4, 1, and 1 showed the best fit for the uncatalyzed soot oxidation and soot oxidation catalyzed by Ag/Al2O3 and Ag/CeO2, respectively. The proposed single-step reaction models were quite capable of reproducing experiments for the uncatalyzed soot oxidation and soot oxidation catalyzed by Ag/CeO2. In the presence of Ag/Al2O3, the oxidation rate at the first 20% of conversion was faster than the 1st-order reaction reflecting that the soot was rapidly oxidized by highly active species generated by Ag/Al2O3. The oxidation of the remaining soot closely followed the 1st-order reaction mechanism.

3.
ACS Omega ; 7(4): 3384-3394, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35128248

RESUMO

An experimental study of the particulate matter (PM)-related emissions from the combustion of waste cooking oil (WCO)-based biodiesel-blended (0%, 30%, and 100% v/v) fuels in a four-cylinder diesel particulate filter (DPF)-equipped engine was carried out. A laboratory-scale DPF under the controlled conditions was installed into an aftertreatment system, and the PM mass and number characteristics were investigated. The combustion analysis based on in-cylinder pressure shows that the added WCO shortened the ignition delay, advanced the combustion ignition, and increased peak pressure values compared to conventional diesel fuel. The WCO increase in specific fuel consumption led to a slight reduction in brake thermal efficiency. The WCO-fueled engine showed reduced PM and total unburned hydrocarbon but increased nitric oxide emission. The nucleation and accumulation were characterized for nanoparticle number and size distribution. The particle number (PN) concentration in total was declined to smaller values when fueling with WCO. In the thermogravimetric analysis, the PM of WCO oxidized to a greater level than that of diesel fuel, which was observed by the weight loss rates during the specified heating program. WCO lowered the elemental carbon (EC) part of PM than diesel fuel. When equipping an exhaust system with DPF, the EC and the total PN drastically reduced while the particle size slightly increased. The use of DPF with the WCO biodiesel mitigated both EC and organic carbon components of the captured particles of the released PM.

4.
ACS Omega ; 7(6): 5376-5384, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35187352

RESUMO

The utilization of biodiesel as an alternative partial replacement of diesel fuel was shown to improve exhaust emissions from diesel engines. Waste cooking oil biodiesel (WCO) has also gained more attention due to edible biofuel supply and the environment. In this study, a nonthermal plasma (NTP) technique was applied to be equipped into the after-treatment system of a four-cylinder diesel engine at medium- and high-load conditions. The exhaust gases in the NTP state from the combustion of WCO and diesel (D100) fuels were partially drawn by spectrometers and nanoparticle-number-derived characteristics were analyzed. The particle number, area, and mass concentrations were in log-normal distribution over equivalent diameters, and they were higher at high load. The concentration of the particulate matter (PM) was lower but was larger in size when the NTP charger was activated due to coagulation principally owing to WCO's number and surface area. The total particle masses were lower for WCO at the two load conditions tested. During NTP charger activation, the mass mean diameters were increased by maximum values of 24.0% for D100 and 5.5% for WCO. The PM removal efficiencies were maximized by 10.8% for D100 and 16.7% for WCO when the NTP charger was in use, and the WCO exhaust was dominantly seen to simultaneously reduce NO x and PM emissions.

5.
ACS Omega ; 6(41): 27443-27453, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34693165

RESUMO

The effects of ethanol on combustion and emission were investigated on a single-cylinder unmodified diesel engine. The ethanol content of 10-50 vol % was chosen to blend with diesel and biodiesel fuels. Selective catalytic reduction (SCR) of nitrogen oxides (NO x ) in the passive mode was also studied under real engine conditions. Silver/alumina (Ag/Al2O3) was selected as the active catalyst, and H2 (3000-10000 ppm) was added to assist the ethanol-SCR. The low cetane number of ethanol resulted in longer ignition delay. The diesel-biodiesel-ethanol fuel blends caused an increase in fuel consumption due to their low calorific value. The brake thermal efficiency of the engine fuelled with relatively low ethanol fraction blends was higher than that of diesel fuel. Unburned hydrocarbons (HC) and carbon monoxide (CO) increased, while NO x decreased with ethanol quantity. The higher ethanol quantity led to increases in the HC/NO x ratio which directly affected the performance of NO x -SCR. Addition of H2 considerably improved the activity of Ag/Al2O3 for NO x reduction. The proper amount of H2 added to promote the ethanol-SCR depended strongly on the temperature of the exhaust where a high fraction of H2 was required at a low exhaust temperature. The maximum NO x conversion of 74% was obtained at a low engine load (25% of maximum load), an ethanol content of 50 vol %, and H2 addition of 10000 ppm.

6.
ACS Omega ; 6(32): 21181-21192, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34423226

RESUMO

Diesel particulate matter (DPM) and oxides of nitrogen (NOx) are the emissions from diesel engines (compression ignition engines) of the most concern and are currently strictly regulated. In this work, we present an alternative diesel emission control technique to assist in further emission reduction. An experiment-oriented study on diesel engine emission abatement using low-power, low-frequency, high-voltage discharge (HVD) treatment was carried out in a laboratory-scale reactor with whole diesel engine exhaust gas. A dielectric barrier discharge (DBD) reactor was used in direct contact with diesel exhaust gas at atmospheric temperature with an input energy density between 200 and 400 J/L. An investigation of the direct effect of the high-voltage discharge reactor on the diesel exhaust gas treatment was carried out to characterize both diesel particle and gaseous emissions. The proposed HVD system demonstrated up to 95% particulate matter reduction by mass or 64% reduction by number, and 63% reduction of the diesel soot particle geometrical mean diameter by HVD-generated O3 oxidation. Thermogravimetric analysis revealed the significant change in the diesel soot compositions and oxidation characteristics. HVD-treated particulate matter demonstrated a lower reactivity in comparison to untreated soot. Gas composition analysis indicated the generation of free radicals (e, O, OH, O3, and N) by the HVD system, as mainly indicated by the increase of the NO2/NO ratio and concentration of CO and O2. The pattern of CO2 reduction while CO and O2 increased indicated the dissociation of CO2 by HVD. Free radicals generated by HVD directly affected DeNO, DeNOx, NO2/NO ratio, and CO and CO2 selectivities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...